首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   26篇
  国内免费   5篇
测绘学   41篇
大气科学   49篇
地球物理   179篇
地质学   183篇
海洋学   27篇
天文学   56篇
综合类   3篇
自然地理   51篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   8篇
  2020年   15篇
  2019年   10篇
  2018年   17篇
  2017年   14篇
  2016年   26篇
  2015年   20篇
  2014年   20篇
  2013年   38篇
  2012年   30篇
  2011年   27篇
  2010年   22篇
  2009年   41篇
  2008年   25篇
  2007年   29篇
  2006年   26篇
  2005年   20篇
  2004年   18篇
  2003年   18篇
  2002年   15篇
  2001年   16篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   15篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有589条查询结果,搜索用时 267 毫秒
581.
Metal roofing material is commonly used for residential and industrial roofs in volcanically active areas. Increased corrosion of metal roofing from chemically reactive volcanic ash following ash deposition post-eruption is a major concern due to decreasing the function and stability of roofs. Currently, assessment of ash-induced corrosion is anecdotal, and quantitative data are lacking. Here, we systematically evaluate the corrosive effects of volcanic ash, specifically ash leachates, on a variety of metal roofing materials (i.e. weathered steel, zinc, galvanized steel, and Colorsteel©) utilizing weathering chamber experiments and direct acid treatments. Weathering chamber tests were carried out for up to 30 days, and visual, chemical, and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. Direct concentrated acid treatments with hydrochloric (HCl), sulphuric (H2SO4), and hydrofluoric (HF) acids demonstrate that roofing materials are chemically resilient. Our experimental results suggest that ash-leachate-related corrosion is a longer-term process (>1 month), potentially related to a multitude of factors including increased ash leachate concentrations, the dissolution of the glass matrix of the ash, moisture retention at the ash-surface boundary, and potential reactions involving photo-oxidation. Overall, corrosion is not a simple process related to the short-term release of acid and/or salt leachates from the ash surface, but a product of dynamic interactions involving ash and water at the surface of metal roofing material for extended periods.  相似文献   
582.
The 2010/2011 Canterbury earthquakes: context and cause of injury   总被引:1,自引:1,他引:0  
The aim of this study was to investigate causes of injury during the 2010/2011 Canterbury earthquakes. Data on patients injured during the Darfield (4 September 2010) and Christchurch (22 February 2011) earthquakes were sourced from the New Zealand Accident Compensation Corporation. The total injury burden was analyzed for demography, context of injury, causes of injury, and injury type. Injury context was classified as direct (shaking of the primary earthquake or aftershocks causing unavoidable injuries), action (movement of person during the primary earthquake or aftershocks causing potentially avoidable injuries), and secondary (cause of injury after shaking ceased). Nine categories of injury cause were identified. Three times as many people were injured in the Christchurch earthquake as in the Darfield earthquake (7,171 vs. 2,256). The primary shaking caused approximately two-thirds of the injuries from both quakes. Actions during the primary shaking and aftershocks led to many injuries (51.3 % Darfield and 19.4 % Christchurch). Primary direct caused the highest proportion of injuries during the daytime Christchurch quake (43.6 %). Many people were injured after shaking stopped in both events: 499 (22.1 % Darfield) and 1,881 (26.2 % Christchurch). Most of these people were injured during clean-up (320 (14.2 %) Darfield; 622 (8.7 %) Christchurch). In both earthquakes, more females than males (1,453 vs. 803 Darfield; 4,646 vs. 2,525 Christchurch) were injured (except by masonry, damaged ground, and during clean-up); trip/fall (27.9 % Darfield; 26.1 % Christchurch) was the most common cause of injury; and soft tissue injuries (74.1 % Darfield; 70.4 % Christchurch) was the most common type of injury. This study demonstrated that where people were and their actions during and after earthquakes influenced their risk of injury.  相似文献   
583.
In this study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. We utilize Clementine UV-vis multispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar mare domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 102 and , effusion rates between 25 and , and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R415/R750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.  相似文献   
584.
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl?) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl? from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl? concentrations than a power-law relationship (Archie’s Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl? concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl? = 1,978 ECa – 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl? as porosity data become available and the site-specific ECw–Cl? relationship is determined.  相似文献   
585.
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.  相似文献   
586.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   
587.
The exsolution of magmatic hydrosaline chloride liquids   总被引:14,自引:0,他引:14  
Jim D. Webster   《Chemical Geology》2004,210(1-4):33-48
Hydrosaline liquid represents the most Cl-enriched volatile phase that occurs in magmas, and the exsolution of this phase has important consequences for processes of hydrothermal mineralization and for volcanic emission of Cl to the atmosphere. To understand the exsolution of hydrosaline liquids in felsic to mafic magmas, the volatile abundances and (Cl/H2O) ratios of more than 1000 silicate melt inclusions (MI) have been compared with predicted and experimentally determined solubilities of Cl and H2O and associated (Cl/H2O) ratios of silicate melts that were saturated in hydrosaline chloride liquid with or without aqueous vapor in hydrothermal experiments. This approach identifies the minimum volatile contents and the values of (Cl/H2O) at which a hydrosaline chloride liquid exsolves from any CO2- or SO2-poor silicate melt. Chlorine solubility is a strong function of melt composition, so it follows that Cl solubility in magmas varies with melt evolution. Computations show that the (Cl/H2O) ratio of residual melt in evolving silicate magmas either remains constant or increases to a small extent with fractional crystallization. Consequently, the initial (Cl/H2O) in melt that is established early during partial melting has important consequences for the exsolution of vapor, vapor plus hydrosaline liquid, or hydrosaline liquid later during the final stages of melt ascent, emplacement, and crystallization or eruption. It is demonstrated that the melt (Cl/H2O) controls the type of volatile phase that exsolves, whereas the volatile abundances in melt control the relative timing of volatile phase exsolution (i.e., the time of earliest volatile exsolution relative to the rate of magma ascent and crystallization history).

Comparing melt inclusion compositions with experimentally determined (Cl/H2O) ratios and corresponding volatile solubilities of hydrosaline liquid-saturated silicate melts suggests that some fractions of the eruptive, calc-alkaline dacitic magmas of the Bonnin and Izu arcs should have saturated in and exsolved hydrosaline liquid at pressures of 2000 bars. Application of these same melt inclusion data to the predicted volatile solubilities of Cu-, Au-, and Mo-mineralized, calc-alkaline porphyritic magmas suggests that the chemical evolution of dioritic magmas to more-evolved quartz monzonite compositions involves a dramatic reduction in Cl solubility that increases the probability of hydrosaline liquid exsolution. The prediction that quartz monzonite magmas should exsolve a hydrosaline chloride liquid, that is potentially mineralizing, is consistent with the general observation of metal-enriched, hypersaline fluid inclusions in the more felsic plutons of numerous porphyry copper systems. Moreover, comparing the volatile contents of melt inclusions from the potassic, alkaline magmas of Mt. Somma-Vesuvius with the predicted (Cl/H2O) ratios of hydrosaline liquid-saturated melts having compositions similar to those of the volatile-rich, alkaline magmas associated with the orthomagmatic gold–tellurium deposits of Cripple Creek, Colorado, suggests that hydrosaline chloride liquid should have exsolved at Cripple Creek as the magmas evolved to phonolite compositions. This prediction is consistent with the well-documented role of Cl-enriched, mineralizing hydrothermal fluids at this major gold-mining district.  相似文献   

588.
The Hudson Bay Lowlands (HBL) stores a significant proportion of the northern peatland carbon pool, and constraints on the factors controlling local-scale variation are needed to better predict soil carbon stocks. We investigated two treed peatland sites, a fen and a bog, to understand how local ecohydrological factors impacted long-term carbon storage. Ecohydrological conditions were reconstructed using quantitative water table depth reconstructions from testate amoebae (TA) and broad peat type classifications. We also linked these factors and carbon storage to changes in TA community structure through the investigation of morphological and functional traits. Both sites have high rates of peat vertical accretion during the warmer Middle Holocene. A shift to a drier, Sphagnum-dominated habitat after 7400 cal a bp at the bog site, however, led to lower apparent carbon accumulation rates (aCARs) than at the fen site. aCARs decreased with the transition to a cooler Late Holocene climate at both sites. Both sites have higher total carbon masses (kg m−2) than other more open and younger HBL localities, demonstrating the potential importance of treed peatlands in regional carbon storage. Shifts in the frequency of TA traits corresponded to changing ecohydrological conditions and provided insights into the role of TA in carbon storage.  相似文献   
589.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号