首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1343篇
  免费   119篇
  国内免费   20篇
测绘学   23篇
大气科学   71篇
地球物理   373篇
地质学   651篇
海洋学   102篇
天文学   168篇
综合类   6篇
自然地理   88篇
  2021年   23篇
  2020年   18篇
  2019年   33篇
  2018年   47篇
  2017年   46篇
  2016年   57篇
  2015年   43篇
  2014年   48篇
  2013年   89篇
  2012年   57篇
  2011年   65篇
  2010年   67篇
  2009年   75篇
  2008年   62篇
  2007年   36篇
  2006年   52篇
  2005年   60篇
  2004年   42篇
  2003年   53篇
  2002年   40篇
  2001年   30篇
  2000年   27篇
  1999年   23篇
  1998年   21篇
  1997年   15篇
  1996年   16篇
  1995年   18篇
  1994年   16篇
  1993年   8篇
  1992年   13篇
  1991年   23篇
  1990年   15篇
  1989年   11篇
  1988年   9篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   20篇
  1983年   20篇
  1982年   17篇
  1981年   14篇
  1980年   12篇
  1978年   12篇
  1977年   9篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   10篇
  1971年   5篇
  1970年   5篇
排序方式: 共有1482条查询结果,搜索用时 875 毫秒
381.
Bernard Bonin  Jean Bbien 《Lithos》2005,80(1-4):131-145
Granite formed in the terrestrial planets very soon after their accretion. The oldest granite-forming minerals (4.4 Ga zircon) and granite (4.0 Ga granodiorite) indicate conditions resembling the present-day ones, with the presence of oceans and external processes related to liquid water. As a result, the current granite paradigm states that granite is not issued directly from the melting of the mantle. However, a granite-upper mantle connection is well established from several pieces of evidence. Tiny micrometre- to millimetre-sized enclaves of granite-like glassy and crystalline materials in Earth's mantle rocks are known in oceanic and continental areas. Earth's mantle-forming minerals, such as olivine, pyroxene, and chromite, can contain silicic materials, either as glass inclusions or as crystallised products (quartz or tridymite, sanidine, K-feldspar, and/or plagioclase close to albite end-member). Importantly, the same evidence is amply found in some types of meteorites, whether they are primitive, such as ordinary chondrites, or differentiated, such as IIE irons, howardite–eucrite–diogenite (HED), and Martian shergottite–nakhlite–chassignite (SNC) achondrites. Although constituting apparently an anomaly, the granite-upper mantle connection can be reconciled with the current granite paradigm by recognising that the conditions prevailing in the formation of granite are not only necessarily crustal but can occur also at depths in mantle rocks. Unresolved problems to be explored further include whether tiny amounts of granitic material within terrestrial mantles may be hints of greater abundances and more direct mantle involvement, and what role can be played by granite trapped within the upper mantle in lithosphere buoyancy.  相似文献   
382.
Nd-evolutionary paths for diversified igneous suites from southern Brazil are here re-evaluated using published results. We interpret the εNd paths considering the secondary fractionation of 147Sm/144Nd due to major petrogenetic processes. The inclusion of Nd isotopes and geochemical data for Precambrian and Mesozoic basic rocks allow improving the discussion on the subcontinental lithosphere beneath southern Brazil. Late Neoproterozoic rocks, mostly granitoids, are exposed in two regions of the southern Brazilian shield, an eastern collisional belt and a western foreland. The latter included two geotectonic domains amalgamated at this time, the São Gabriel Arc (900–700 Ma), and the Taquarembó cratonic block. Magma genesis mainly involved mixture of crustal and incompatible-element-enriched mantle components, both with a long residence time. Continental segments are the Neoarchaean–Paleoproterozoic lower crust (ca. 2.55 Ga) in the western foreland, and Paleoproterozoic–Neoproterozoic recycled crust (2.1–0.8 Ga) in the collisional belt. Granitoids with a single crustal derivation are limited in the southern Brazilian Shield. Mixing processes are well-registered in the western foreland, where the re-enriched old mantle was probably mixed with a 900–700 Ma-old subducted lithosphere and a 2.55 Ga-old lower crust. The contribution of the latter increased from the early 605–580 Ma to the later 575–550 Ma Neoproterozoic events, which may be due either to crustal thickening or to delamination of the lithosphere. Magma sources were diversified in the 660–630 Ma collisional belt. Initially, they involved the mixing between two components with similar Nd isotopic ratios, a 2.1–0.8 Ga-old recycled crust and a subduction-processed old mantle. Regional heating and abundant production of granitic melts, with diversified contribution of enriched mantle components, mark the end of the collisional period, at 630–580 Ma. We can also attribute this to the delamination of the lithosphere, so that the same geodynamic process may explain the magmatism in the whole shield at the end of the Dom Feliciano Orogeny. Mesozoic rocks include flood basalts from the Cretaceous Paraná Province and sub-coeval alkalic suites. Multiple processes of metasomatism affected the lithospheric mantle, resulting in some complexity but they mainly register two enriched-mantle components, both generated during Neoarchaean–Paleoproterozoic events. One end-member has a more pronounced subduction signature. The other one probably resulted from the re-enrichment of the first component at the end of the Camboriú collisional orogeny (2.0 Ga).  相似文献   
383.
384.
Meteoric smoke particles (MSPs) form through the vaporization of meteoroids and the subsequent re-condensation of metallic species in the mesosphere. Recently, iridium and platinum enrichments have been identified in Greenland ice layers and attributed to the fallout of MSPs supplying polar latitudes with cosmic matter during the Holocene. However, the MSP fallout to Antarctica during the Earth's climatic history remains essentially unknown.

We have determined iridium and platinum in deep Antarctic ice from Dome C and Vostok dated back to 240 kyrs BP. We find high super-chondritic fluxes during warm periods and low meteoric accretion during glacial times, a pattern that is opposite to any known climatic variation in dust fallout to polar regions. The proposed explanation of this accretion regime is a weaker polar vortex during warm periods, allowing peripheral air masses enriched in volcanic iridium and platinum to penetrate inland to Antarctica. The MSP signal emerges only during cold phases and is four times lower than in the Greenland ice cap where more snow accumulates. This suggests that wet deposition is an important route of cosmic material to the Earth's surface.  相似文献   

385.
Geochemical and isotopic investigation of three small mafic intrusions (Løyning: 1250 × 150 m, Hogstad: 2000 × 200 m, Koldal: 1250 × 500 m) in the marginal zones of the Egersund-Ogna (Løyning, Koldal) and Åna-Sira massif-type anorthosites (Hogstad) (Rogaland Anorthositic Province, south Norway: 930 Ma) provides new insights into the late evolution of anorthositic diapirs. These layered mafic intrusions are essentially of norite, gabbronorite as well as leuconorite and display conspicuous evidence of subsolidus recrystallization. In Løyning and Hogstad, the modal layering is parallel to the subvertical foliation in the enclosing anorthosite. The northern part of the Koldal intrusion cuts across the foliation of the anorthosite, whereas in its southern part the subvertical layering is parallel to the anorthosite's foliation. The regularity of the layered structures suggests that the layering was initially acquired horizontally and later tilted during the final movements of the diapirs.

The least differentiated compositions of plagioclase and orthopyroxene in the three intrusions (An59–En68 in Løyning, An49–En64 in Hogstad and An44–En61 in Koldal) and the REE contents in apatite (Hogstad) indicate that their parent magmas were progressively more differentiated in the sequence Løyning–Hogstad–Koldal. Isotopic data (Løyning: 87Sr/86Sr: 0.70376–0.70457, εNdt: + 6.8 to + 2.7; Hogstad: 87Sr/86Sr: 0.70537–0.70588, εNdt: + 2.1 to − 0.5; Koldal: 87Sr/86Sr: 0.70659–0.70911, εNdt: + 3.5 to − 1.6) also indicate that in this sequence, parent magmas were characterized by a progressively more enriched Sr and Nd isotopic signature. In Løyning, the parent magma was slightly more magnesian and anorthitic than a primitive jotunite; in Hogstad, it is a primitive jotunite; and, in Koldal, an evolved jotunite. Given that plagioclase and orthopyroxene of the three intrusions display more differentiated compositions than the orthopyroxene and plagioclase megacryts of the enclosing anorthosites, it is suggested that the parent magmas of the small intrusions are residual melts after anorthosite formation which were entrained in the anorthositic diapir during its rise from lower crustal chambers.

Calculated densities of primitive jotunites (2.73–2.74 at FMQ, 0.15% H2O, 200 ppm CO2, 435 ppm F, 1150 °C, 3 kb) and evolved jotunites (2.75–2.76 at FMQ, 0.30% H2O, 400 ppm CO2, 870 ppm F, 1135 °C, 3 kb) demonstrate that they are much denser than the plagioclase of the surrounding anorthositic crystal mush (2.61–2.65). Efficient migration and draining of dense residual melts through the anorthositic crystal mush could have taken place along sloping floors (zones of lesser permeability in the mush), which occur along the margins of the rising anorthositic diapirs. This process takes into account the restricted occurrence of the mafic intrusions in the margins of the massif anorthosites. In a later stage, when the anorthosite was nearly consolidated, the residual melts were more differentiated (evolved jotunites) and could have been extracted into extensional fractures in the cooling and contracting anorthositic body in a similar way as aplitic dikes are emplaced in granitic plutons. As in the Rogaland Anorthositic Province, these dikes are much more abundant than the small mafic intrusions, collection and transport along dikes was probably more efficient than draining through the crystal mush.  相似文献   

386.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   
387.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
388.
This work relates to the debate on the fossil organic carbon (FOC) input in modern environments and its possible implication for the carbon cycle, and suggests the use of Rock‐Eval 6 pyrolysis as a relevant tool for tracking FOC in such environments. Considering that such a delivery is mainly due to supergene processes affecting the continental surface, we studied organic matter in different reservoirs such as bedrocks, alterites, soils and rivers in two experimental catchments at Draix (Alpes de Haute Provence, France). Samples were subjected to geochemical (Rock‐Eval 6 pyrolysis) investigations and artificial bacterial degradations. After comparing the geochemical fingerprint of samples, geochemical markers of FOC were defined and tracked in the different reservoirs. Our results confirm the contribution of FOC in modern soils and rivers and display the various influences of weathering and erosional processes on the fate of FOC during its exchange between these pools. In addition, the contrasting behaviour of these markers upon the supergene processes has also highlighted the refractory or labile characters of the fossil organic matter (FOM). Bedrock to river fluxes, controlled by gully erosion, are characterized by a qualitative and quantitative preservation of FOM. Bedrock to alterite fluxes, governed by chemical weathering, are characterized by FOC mineralization without qualitative changes in deeper alterites. Alterite to soils fluxes, controlled by (bio)chemical weathering, are characterized by strong FOC mineralization and qualitative changes of FOM. Thus weathering and erosional processes induce different FOM evolution and affect the fate of FOC towards the global carbon cycle. In this study, gully erosion would involve maintenance of an ancient sink for the global carbon cycle, while (bio)chemical processes provide a source of CO2. Finally, this study suggests that Rock‐Eval 6 pyrolysis can be considered as a relevant tool for tracking FOC in modern environments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
389.
390.
Evaluation of the long-term surface stability of crown pillars overlying underground mines is an important component of mine closure planning. The definition of a crown pillar, as well as a brief discussion of the assessment of the probability and consequence of crown pillar failure are given in this paper. Techniques for stability assessment using mechanistic, empirical and numerical simulation techniques are discussed. Consequence assessment is discussed, but is still subjective and difficult to quantify. Where crown pillars are suspected to be marginally stable or unstable either at the time of the investigation or over the long term, and where the consequence of failure is medium to high, the closure plan for the site must include proposed rehabilitation alternatives. Selection of the optimum solution depends largely upon financial considerations, but also upon the common public expectation that the result of mine closure planning be a permanent solution that does not restrict public access or future land use on the site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号