首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   21篇
  国内免费   4篇
测绘学   9篇
大气科学   30篇
地球物理   95篇
地质学   222篇
海洋学   34篇
天文学   30篇
综合类   4篇
自然地理   83篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   5篇
  2017年   11篇
  2016年   11篇
  2015年   6篇
  2014年   17篇
  2013年   48篇
  2012年   15篇
  2011年   24篇
  2010年   21篇
  2009年   28篇
  2008年   21篇
  2007年   24篇
  2006年   22篇
  2005年   5篇
  2004年   20篇
  2003年   13篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   12篇
  1998年   13篇
  1997年   6篇
  1996年   5篇
  1995年   9篇
  1994年   9篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1987年   8篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1967年   2篇
排序方式: 共有507条查询结果,搜索用时 20 毫秒
131.
Ultramafic and mafic granulites from Archaean gneisses in N.W. Scotland (the Scourian) show evidence of two periods of granulite facies mineral growth. The first produced a high pressure clinopyroxene +garnet±plagioclase assemblage at an estimatedP-T of 12–15 kb and 1,000° C. Uplift of the complex caused partial breakdown of the garnet by reaction with clinopyroxene to produce orthopyroxene +plagioclase ±spinel±amphibole symplectites, at an estimatedP-T of 10–14 kb and 800°–900° C. Garnet stability is shown to depend on both whole-rock Fe/Mg ratios and onP-T conditions. The pressures imply crustal thicknesses in the Archaean of least 35–45 km.  相似文献   
132.
133.
Eight C3 chondrites were examined by the I129Xe129 dating method, to see whether their IXe “ages” (better, initial I129I127ratios ≡ R0) correlate with any other properties. The R0's range from 1.60 × 10?4 to 1.09 × 10?4, corresponding to IXe ages from 2.0 Myr before to 6.7 Myr after Murchison magnetite. Three C3O's (Lancé, Felix, Ornans) have essentially indistinguishable R0's of (1.41 ± 0.13) to (1.17 ± 0.10) × 10?4; the fourth C3O, Warrenton, is undatable owing to homogenization of radiogenic and trapped Xe.Four C3V's show a distinct spread: Vigarano and Grosnaja are highest [R0 = (1.60 ± 0.07) and (1.57 ± 0.14) × 10?4], Mokoia is intermediate, and Kaba is lowest [R0 = (1.38 ± 0.06) and (1.09 ± 0.10) × 10?4]. Literature values for Allende place it near Kaba. These R0's correlate inversely with 4 other properties: I-, Br-, and Cd-content, and olivine composition, both percent mean deviation (PMD) and proportion of iron-poor olivine grains (≤2% fayalite).It is difficult to accept the ~9 Myr spread in R0 as a true age, reflecting either nebular or parent-body processes. This time span is more than an order of magnitude longer than the lifetime of the solar nebula inferred from astronomical evidence. Nor does the degree of thermal metamorphism, which is slight for C3's anyway, correlate with R0. A more plausible interpretation is that the variations in R0 reflect mainly isotopic heterogeneity of iodine. The simplest model that accounts for the correlations with R0 involves mixing of two iodine components in the solar nebula, associated with gas and grains, respectively. The second, of lower I129I127 ratio, predominated at later times and thus became enriched in late-formed meteorites, along with other volatiles such as Cd and Br. The low Fe content and large PMD of olivine may reflect either less metamorphism owing to shallow location in the parent body, or greater reduction of Fe2+ during chondrule formation.  相似文献   
134.
The diffusion properties of Na, Cs, Sr, Ba, Co, Mn, Fe and Sc ions in a basaltic and an andesitic melt have been determined experimentally using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,300–1,400° C. Diffusion of all cations follows an Arrhenius relationship; the values of the activation energies range from 24 kcal mol–1 for Na to 67 kcal mol–1 for Co in the andesitic melt, and from 39 kcal mol–1 for Na to 65 kcal mol–1 for Cs in the basaltic melt. Relative diffusivities in the basaltic melt, but not in the andesitic melt, correlate with assumed ionic radii values. Each cation, except Na+, diffuses faster in the basaltic melt than in the andesitic melt over the studied temperature range. Sodium shows similar diffusivity in the two melts.Compensation diagrams incorporating new and some previously-published data indicate that Cs probably diffuses by different mechanisms in different silicate glass and melt systems. Iron has a relatively high activation energy which is consistent with its part occupancy of tetrahedral co-ordination polyhedra.  相似文献   
135.
The mobility of the rare earth element (REE) during hydrous burial metamorphism is described from three localities. Comparison of REE abundances in relict domains and metadomains from flood lavas in the Maddina Volcanics, Fortescue Group, Western Australia shows that, relative to the relict domains, REE may be strongly depleted in certain metadomains. Strong variations in La/Yb, La/Sm and Eu may also occur due to postcrystallization secondary processes. Similar comparisons in flood lavas from Mamainse Point in the Canadian Keweenawan Series show that REE are mobile and increase in abundance in metadomains. Spilites from U.S. Virgin Islands also show evidence for REE mobility during low grade burial metamorphism. In this case light REE (LREE) have been preferentially mobilized with heavy REE (HREE) remaining parallel or sub-parallel on chondrite normalized plots.REE analyses from these locations together with an evaluation of published work suggests that the mobility of REE can be described by: 1. gross REE and selective LREE enrichment; 2. REE movement around a primary mean; 3. gross REE depletion; 4. selective REE mobility. Failure to take into account REE mobility may lead to incorrect conclusions concerning petrogenetic models based on altered basic sequences. The coherence of REE with other key trace elements during alteration is also discussed.  相似文献   
136.
Thermal expansion data, determined by powder X-ray diffraction methods are presented for 11 members of the (Li,Na,K,Rb)8(Al6Si6O24)Cl2 solid solution series, 3 members of the (Na,K)8(Al6Si6O24)Br2 solid solution series and Na8(Al6Si6O24)I2. Only the latter showed a discontinuity in its expansion curve at 810° C wigh a mean linear expansion coefficient of 22.0×10?6 °C?1 below and 7.7×10?6 °C?1 above the discontinuity. The mean expansion coefficients from 0° to 500° C decrease gradually over the range of room temperature cell edges from 8.4 to 8.89 Å, then increase up to a cell edge of 9.01 Å above which they decrease sharply and extrapolate to a zero coefficient at 9.4 Å. These variations may be related to the expansion characteristics of the bonds between the cavity cations and cavity anions in different sodalites. The aluminosilicate-sodalites which show a discontinuity in their thermal expansion curves are those with large cavity anions, I? or SO 4 2? ; the discontinuity is believed to occur at the point when the x-coordinate of the cavity cation becomes 0.25.  相似文献   
137.
138.
An analytical approach to the analysis of zoning profiles in minerals is presented that simultaneously accounts for all of the possible continuous reactions that may be operative in a given assemblage. The method involves deriving a system of simultaneous linear differential equations consisting of a Gibbs-Duhem equation for each phase, a set of linearly independent stoichiometric relations among the chemical potentials of phase components in the assemblage, and a set of equations describing the total differential of the slope of the tangent plane to the Gibbs free energy surface of solid solution phases. The variables are the differentials of T, P, chemical potentials of all phase components, and independent compositional terms of solid solution phases. The required input data are entropies, volumes, the compositions of coexisting phases at a reference P and T, and an expression for the curvature of the Gibbs functions for solid solution phases. Results derived are slopes of isopleths (dP/dT, dX/dT or dX/dP) which can be used to contour P-T diagrams with mineral composition.To interpret mineral zoning, T and P can be expressed as functions of n independent composition parameters, where n is the variance of the mineral assemblage. The total differentials of P and T are differential equations that can be solved by finite difference techniques using the derivatives obtained from the analytical formulation of phase equilibria.Results calculated from Zone I and Zone IV garnets of Tracy et al. (1976) indicate that Zone I garnets grew while T increased (T+72° C) and P decreased sharply (P–3 kb). Zone IV garnets zoned in response to decreasing T (T–17° C) and P (P–1 kb). A P-T path calculated for a zoned garnet from the Greinerschiefer series, western Tauern Window, Austria, also indicates growth during decompression (–3kb) and heating (T+15° C). A P-T path calculated for the Wissahickon schist (Crawford and Mark 1982) indicates growth during cooling and compression (T–25 C, P+2.2 kb). The calculated P-T paths differ according to structural environment and can be used to relate mineral growth to tectonic processes.  相似文献   
139.
Sapropelite developed on a granodiorite basement below the Archean Steeprock Group in the western Superior Structural Province of Canada, weathered materials from a 3.15 Ga granitic basement to the Archean Yellowknife Supergroup in the Slave Structural Province, and weathered detritus from contemporaneous komatiites and gneissic basement of the Archean Prince Albert Group in northern Churchill Structural Province, have been analysed. The deviation of the weakly metamorphosed weathered material from the chemical composition of their precursors is comparable to that seen in more recent weathered profiles from similar source materials. This includes the enhancement of ferric to ferrous iron ratios, and potash to soda, lime and magnesia ratios. There is also an increase in lighter REE and a depletion of heavier REE. Quartz rich sediments immediately above the unconformity, derived from the basement granitoids, may be enriched in aluminum and iron, and yield chloritoid under proper metamorphic conditions. Sediments formed from mixed sources, such as weathered gneissic basement and contemporaneous komatiitic volcanics, yield anomalous resistate sedimentary mixtures such as chromiferous quartzites. Based on the data given here, there is no need to postulate that different weathering and/or ground water systems were operative during the Archean, compared to more recent times. On the other hand the complicated weathering and diagenetic history that altered material undergoes below a subsiding unconformity, relies as much or more on the buffering capacity of the enclosed rock mass as on the atmospheric conditions prevalent at the time of weathering. Hence weathering profiles, old and new, are more a response to local environmental conditions within the rock than the composition of the atmosphere.  相似文献   
140.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号