首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3768篇
  免费   150篇
  国内免费   35篇
测绘学   163篇
大气科学   323篇
地球物理   1167篇
地质学   1286篇
海洋学   319篇
天文学   354篇
综合类   16篇
自然地理   325篇
  2022年   19篇
  2021年   53篇
  2020年   74篇
  2019年   77篇
  2018年   118篇
  2017年   133篇
  2016年   183篇
  2015年   137篇
  2014年   144篇
  2013年   261篇
  2012年   168篇
  2011年   193篇
  2010年   190篇
  2009年   204篇
  2008年   171篇
  2007年   140篇
  2006年   109篇
  2005年   79篇
  2004年   84篇
  2003年   93篇
  2002年   100篇
  2001年   91篇
  2000年   59篇
  1999年   54篇
  1998年   62篇
  1997年   61篇
  1996年   51篇
  1995年   44篇
  1994年   36篇
  1993年   23篇
  1992年   31篇
  1991年   19篇
  1990年   30篇
  1989年   24篇
  1988年   30篇
  1987年   25篇
  1986年   28篇
  1985年   41篇
  1984年   34篇
  1983年   41篇
  1982年   40篇
  1981年   35篇
  1980年   39篇
  1979年   33篇
  1978年   27篇
  1977年   32篇
  1976年   23篇
  1975年   29篇
  1973年   22篇
  1971年   15篇
排序方式: 共有3953条查询结果,搜索用时 15 毫秒
61.
Groundwater in front of warm‐based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier meltwater in front of a warm‐based glacier in Southeast Greenland (Mittivakkat Gletscher, 65° 41′ N, 37° 48′ W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major ions and water isotopes (δD, δ18O). The 2 yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2–8 weeks until stable chemical conditions were reached again. Water isotope composition shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near‐surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined geochemical and isotopic composition, which is distinguishable from other water sources in the proglacial environment. However, the shallow groundwater composition at a given time is highly dependent on major outbursts of glacier water in the previous months.  相似文献   
62.
63.
Manta rays inhabit tropical, subtropical and temperate waters. Aggregation sites of manta rays have been recognized worldwide, but the reasons for this behavior are still poorly understood. This study describes environmental factors influencing aggregation sites of the giant manta ray (Manta birostris) off the northeastern coast of the Yucatan Peninsula. Observations of manta rays were obtained from scientific surveys conducted during 2006–2011. Environmental data were obtained from satellite imagery. The maximum entropy (Maxent) method for habitat modeling was used to determine the effects of environmental conditions on the species and predict suitable habitat for manta rays in this region. Primary productivity and distance to the coast were the most influential variables, suggesting that aggregation occurs in highly productive coastal waters. The distribution of manta rays predicted by the Maxent model showed that the most suitable habitat within the study area is located off the northeastern coast of the Yucatán Peninsula, more precisely, northeast of Isla Holbox and northwest of Isla Contoy. Seasonal patterns of distribution suggest that the most suitable conditions are present from July through September.  相似文献   
64.
65.
66.
For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.  相似文献   
67.
68.
The seasonal variation in phytoplankton activity is determined by analysing 1385 primary production (PP) profiles, chlorophyll a (Chl) concentration profiles and phytoplankton carbon biomass concentrations (C) from the period 1998–2012. The data was collected at six different stations in the Baltic Sea transition zone (BSTZ) which is a location with strong seasonal production patterns with light as the key parameter controlling this productivity. We show that the use of Chl as a proxy for phytoplankton activity strongly overestimates the contribution from the spring production to annual pelagic carbon flow. Spring (February and March) Chl comprised 16–30% of the total annual Chl produced, whereas spring C was much lower (8–23%) compared to the annual C. Spring PP accounted for 10–18% of the total annual PP, while the July–August production contributed 26–33%, i.e. within the time frame when zooplankton biomass and grazing pressure are highest. That is, Chl failed in this study to reflect the importance of the high summer PP. A better proxy for biomass may be C, which correlated well with the seasonal pattern of PP (Pearson correlation, p < 0.05). Thus, this study suggests to account for the strong seasonal pattern in C/Chl ratios when considering carbon flow in coastal systems. Seasonal data for PP were fitted to a simple sinusoidal wave model describing the seasonal distribution of PP in the BSTZ and were proposed to present a better parameterizaton of PP in shallow stratified temperate regions than more commonly applied proxies.  相似文献   
69.
Progress in Carrier Phase Time Transfer   总被引:1,自引:0,他引:1  
The progress of the joint Pilot Project for time transfer, formed by the International GPS Service (IGS) and the Bureal International des Poids et Mesures (BIPM), was recently reviewed. Three notable milestones were set. (1) The IGS will implement, at least in a test mode, an internally realized time scale based on an integration of combined frequency standards within the IGS network. This will eventually become the reference time scale for all IGS clock products (instead of the current GPS broadcast time). (2) A new procedure for combined receiver and satellite clock products will be implemented officially in November 2000. Receiver clocks are an entirely new product of the IGS. (3) The BIPM will coordinate an effort to calibrate all Ashtech Z12-T (and possibly other) receivers suitable for time transfer applications, either differentially or absolutely. Progress reports will be presented publicly in the spring 2001. ? 2001 John Wiley & Sons, Inc.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号