首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   19篇
  国内免费   6篇
测绘学   18篇
大气科学   45篇
地球物理   131篇
地质学   255篇
海洋学   77篇
天文学   124篇
综合类   3篇
自然地理   64篇
  2023年   5篇
  2021年   8篇
  2020年   12篇
  2019年   10篇
  2018年   16篇
  2017年   22篇
  2016年   14篇
  2015年   12篇
  2014年   18篇
  2013年   40篇
  2012年   27篇
  2011年   31篇
  2010年   23篇
  2009年   51篇
  2008年   32篇
  2007年   23篇
  2006年   43篇
  2005年   26篇
  2004年   26篇
  2003年   12篇
  2002年   19篇
  2001年   14篇
  2000年   14篇
  1999年   8篇
  1998年   14篇
  1997年   9篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   14篇
  1986年   5篇
  1985年   12篇
  1984年   14篇
  1983年   14篇
  1982年   9篇
  1981年   11篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   5篇
  1976年   5篇
  1975年   9篇
  1974年   3篇
  1973年   3篇
排序方式: 共有717条查询结果,搜索用时 140 毫秒
41.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   
42.
Previous studies of the distribution of U and Th in parent versus weathered granites have shown both depletion and enrichment of these elements during weathering. In this study, the distribution of U and Th decay series isotopes was determined in a weathering profile of a granitic saprolite, which showed textural preservation indicating isovolumetric weathering. Two types of dissolution methods were used: a whole-rock dissolution and a sodium-citrate dithionite leach to preferentially attack noncrystalline phases of weathering products. Using volume-based activities, 45–70 percent of the total 232Th was gradually removed during weathering. Although the whole-rock 228Th232Th activity ratios were in equilibrium, there were large excesses of 228Th in the leachable fraction of both parent rock (228Th232Th = 2.06) and partially weathered saprolite (228Th232Th = 3–6.5), due to alpha recoil and release of daughter 228Th to the weathering rind of the mineral grain. For the most weathered sample, 81 percent of the thorium was in the teachable fraction and 228Th232Th = 1, indicating that even the more resistant minerals were attacked.The total U activities showed as much variation in the six parent rock samples as in the weathered profile, and 234U238U were in equilibrium in both the whole-rock and leachable fractions. 230Th was deficient relative to 234U and 226Ra in both fractions, suggesting recent addition of U and Ra to the entire profile. The large variation in U was not from absorption onto the intermediate weathering products, because only 11–23 percent of the U was in the leachable fraction.  相似文献   
43.
Stratigraphic and chemical data from the ice core of an ‘anthropogenic palsa’ at Toolik Lake, Alaska, indicate that the mound formed as a consequence of hydrostatic pressure developed in an isolated hydrologic system within the active layer. Survey data for five palsas over a three-year period suggest that growth was essentially complete at the time of the initial survey; a net decrease of summit elevation is apparent in all five mounds, but complete degradation of the palsas would require several decades at observed rates. Because accurate field measurements of thermal and hydrologic evolution in such features are extremely difficult, simulation of the environmental conditions and events involved in palsa growth is an important supplement to field observation. Both analytic and finite-element models yield results that are in substantial agreement with inferences drawn from observational data.  相似文献   
44.
45.
46.
Vertical distributions of particulate silica, and of production and dissolution rates of biogenic silica, were determined on two N-S transects across the Pacific sector of the Antarctic Circumpolar Current during the austral spring of 1978. Particulate silica profiles showed elevated levels in surface water and near the bottom, with low (35–110 nmol Si · 1?1) and vertically uniform values through the intervening water column. Both the particulate silica content of the upper 200 m and the production rate of biogenic silica in the photic zone increased from north to south, reaching their highest values near the edge of the receding pack ice. A significant, but variable, fraction (18–58%) of the biogenic silica produced in the surface layer was redissolving in the upper 90–98 m. Net production of biogenic silica in the surface layer (production minus dissolution) was proceeding at a mean rate of ca. 2 mmol Si · m?2 · day?1. This is ca. 4 times greater than the most recent estimate of the mean accumulation rate of siliceous sediments beneath the ACC. We estimate, based on mass balance, that the mean dissolution rate of biogenic silica in subsurface water column in the Southern Ocean is 1.2–2.9 mmol Si · m?2 · day?1.  相似文献   
47.
Ti, Zr, Y and P, known to be chemically immobile elements during alteration and metamorphism, have been ploted in a set of diagrams in order to discriminative between calc-alkaline andesites from island arcs and continental margin. This method may be an appropiate procedure to help in the discrimination between ancient volcanics of both groups.  相似文献   
48.
A spatial variant of the basic reproduction number (R0), here defined as the number of subsequent deaths attributed to an initial mortality, can be used to identify geographic variation within an epidemic. A spatial R0 was calculated at the neighborhood level, here defined by a 50‐m buffer surrounding an index case, for mortality data from the 1878 yellow fever epidemic of New Orleans. The highest number of secondary mortalities linked to a neighborhood index case was twelve, with a further eighty‐seven extrapolated morbidity cases. Results also highlight the importance of multideath residences and cultural contacts in neighborhood‐level disease spread.  相似文献   
49.
Major and trace element XRF and in situ LA-ICP-MS analyses of ilmenite in the Tellnes ilmenite deposit, Rogaland Anorthosite Province, SW Norway, constrains a two stage fractional crystallization model of a ferrodioritic Fe-Ti-P rich melt. Stage 1 is characterized by ilmenite-plagioclase cumulates, partly stored in the lower part of the ore body (Lower Central Zone, LCZ), and stage 2 by ilmenite-plagioclase-orthopyroxene-olivine cumulates (Upper Central Zone, UCZ). The concentration of V and Cr in ilmenite, corrected for the trapped liquid effect, (1) defines the cotectic proportion of ilmenite to be 17.5 wt% during stage 1, and (2) implies an increase of D VIlm during stage 2, most likely related to a shift in fO2. The proportion of 17.5 wt% is lower than the modal proportion of ilmenite (ca. 50 wt%) in the ore body, implying accumulation of ilmenite and flotation of plagioclase. The fraction of residual liquid left after crystallization of Tellnes cumulates is estimated at 0.6 and the flotation of plagioclase at 26 wt% of the initial melt mass. The increasing content of intercumulus magnetite with stratigraphic height, from 0 to ca. 3 wt%, results from differentiation of the trapped liquid towards magnetite saturation. The MgO content of ilmenite (1.4–4.4 wt%) is much lower than the expected cumulus composition. It shows extensive postcumulus re-equilibration with trapped liquid and ferromagnesian silicates, correlated with distance to the host anorthosite. The Zr content of ilmenite, provided by in situ analyses, is low (<114 ppm) and uncorrelated with stratigraphy or Cr content. The data demonstrate that zircon coronas observed around ilmenite formed by subsolidus exsolution of ZrO2 from ilmenite. The U-Pb zircon age of 920 ± 3 Ma probably records this exsolution process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
50.
This paper gives an overview on the application of geosynthetic-reinforced soil structures in Taiwan. Taiwan has an unique topography and geotechnical conditions that rendered a less conservative and more challenging design compared to that of North America, Europe and Japan. The Ji-Ji (Chi-Chi) earthquake of 1999 gave an opportunity to examine the behavior of reinforced soil structures. The performance of several modular-block reinforced soil retaining walls and reinforced slopes at the vicinity of the fault was evaluated. Reinforced structures performed better than unreinforced soil retaining walls. The failure cases were highlighted and the cause of failure was identified. The lack of seismic design consideration could be a major cause of failure. The compound failure mode, the inertia force of the blocks, and the connection stiffness and strength relative to the large dynamic earth pressure, were among major items that would warrant further design consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号