首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   8篇
  国内免费   19篇
测绘学   8篇
大气科学   20篇
地球物理   42篇
地质学   69篇
海洋学   17篇
天文学   29篇
综合类   1篇
自然地理   21篇
  2023年   2篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   11篇
  2017年   9篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   9篇
  2011年   16篇
  2010年   16篇
  2009年   10篇
  2008年   12篇
  2007年   17篇
  2006年   9篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1977年   2篇
  1974年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
31.
The relative abundance of the different picoplankton components (eukaryotic picophytoplankton (Peuk), picocyanobacteria (Pcy) and bacterioplankton), and their relationships with the lake conditions were studied in three types of shallow lakes from the Pampa Plain (Argentina) that differ in their optical properties: clear-vegetated, phytoplankton-turbid and inorganic-turbid. All the selected lakes, but one, are characterized by their different alternative steady state (clear-vegetated and phytoplankton-turbid water phases) following the model proposed by Scheffer et al. (1993).Autotrophic and heterotrophic picoplankton abundances were analyzed seasonally in relation to environmental variables. All the lakes presented high concentrations of total nitrogen (TN) (>229 μg L−1), total phosphorus (TP) (>46 μg L−1) and dissolved organic carbon (DOC) (>13.7 mg L−1). Clear-vegetated lakes were characterized by vertical diffuse PAR (photosynthetic active radiation) attenuation coefficient (kdPAR) lower than 11 m−1, whereas inorganic-turbid lake always showed values higher than 21.1 m−1. The euphotic zone depth (Z1%) was wider in clear-vegetated lakes (40–140 cm) and thinner in the inorganic-turbid (10–20 cm). The phytoplankton-turbid lakes presented a wide range in the values of these variables (kdPAR: 5.2–35.8 m−1; Z1%: 10–90 cm). Phytoplankton chlorophyll-a (Chl-a) strongly differed, ranging from 1.6 to 334.6 μg L−1. Picophytoplankton was mainly represented by phycocianine-rich (PC-rich) Pcy in all cases, dominating over Peuk algae. The total and relative abundances of eukaryotic picophytoplankton, Pcy and bacterioplankton, as well as the size structure of the phytoplankton community differed among the water bodies. In general, clear-vegetated water bodies exhibited similar abiotic characteristics, picophytoplankton/bacterioplankton ratios, and phytoplankton size structure. Contrarily, no clear trend was identified for the group of turbid lakes. The contrasting results obtained for the importance of the picoplankton components in phytoplankton-turbid shallow lakes evidence that the availability of the energetical and nutrient resources cannot be solely considered to predict their relative importance in this type of shallow lake.  相似文献   
32.
The use of cement and concrete as fracture grouting or as tunnel seals in a geological disposal facility for radioactive wastes creates potential issues concerning chemical reactivity. From a long-term safety perspective, it is desirable to be able model these interactions and changes quantitatively. The ‘Long-term Cement Studies’ (LCS) project was formulated with an emphasis on in situ field experiments with more realistic boundary conditions and longer time scales compared with former experiments. As part of the project programme, a modelling inter-comparison has been conducted, involving the modelling of two experiments describing cement hydration on one hand and cement-rock reaction on the other, with teams representing the NDA (UK), Posiva (Finland), and JAEA (Japan).This modelling exercise showed that the dominant reaction pathways in the two experiments are fairly well understood and are consistent between the different modelling teams, although significant differences existed amongst the precise parameterisation (e.g. reactive surface areas, dependences of rate upon pH, types of secondary minerals), and in some instances, processes (e.g. partition of alkali elements between solids and liquid during cement hydration; kinetic models of cement hydration). It was not conclusive if certain processes such as surface complexation (preferred by some modellers, but not by others) played a role in the cement-rock experiment or not. These processes appear to be more relevant at early times in the experiment and the evolution at longer timescales was not affected. The observed permeability profile with time could not be matched. The fact that no secondary minerals could be observed and that the precipitated mass calculated during the simulations is minor might suggest that the permeability reduction does not have a chemical origin, although a small amount of precipitates at pore throats could have a large impact on permeability.The modelling exercises showed that there is an interest in keeping the numerical models as simple as possible and trying to obtain a reasonable fit with a minimum of processes, minerals and parameters. However, up-scaling processes and model parameterisation to the timescales appropriate to repository safety assessment are of considerable concern. Future modelling exercises of this type should focus on a suitable natural or industrial analogue that might aid assessing mineral-fluid reactions at these longer timescales.  相似文献   
33.
Pesticides are a potential threat to the quality of extracted groundwater when the water-supply area is used for agricultural activities. This problem is discussed for the water-supply area of Sint-Jansteen, The Netherlands, where measured pesticide concentrations in the extracted water regularly exceed EU limits (0.1 μg/L). Groundwater samples taken from the aquifer within the water-supply area show low contamination, but samples taken from the extracted water occasionally contain pesticides, making the water inadequate for drinking-water purposes. The more intense contamination of the extracted water is caused by the change in the natural groundwater flow pattern near the extraction wells. In this area, pesticide use cannot be avoided easily, and an approach is given to differentiate pesticide use in the area according to expected travel time toward the wells and the chemical characteristics of the pesticides. A groundwater flow model for the area is developed and the effects of groundwater extraction on the natural flow pattern are evaluated. Using particle tracking, the travel-time zones are determined. Combining these results and the degradation behavior of certain pesticides led to an optimal scheme to integrate agricultural activities and groundwater extraction in the area. This is illustrated for five different types of pesticides (atrazine, simazine, bentazone, MCPA, and mecoprop). Received, October 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   
34.
35.
We propose a new model for the magnetic field at different distances from the Sun during different phases of the solar cycle. The model depends on the observed large-scale non-polar (\({\pm}\, 55^{\circ }\)) photospheric magnetic field and on the magnetic field measured at polar regions from \(55^{\circ }\) N to \(90^{\circ }\) N and from \(55^{\circ }\) S to \(90^{\circ }\) S, which are the visible manifestations of cyclic changes in the toroidal and poloidal components of the global magnetic field of the Sun. The modeled magnetic field is determined as the superposition of the non-polar and polar photospheric magnetic field and considers cycle variations. The agreement between the model predictions and magnetic fields derived from direct in situ measurements at different distances from the Sun, obtained with different methods and at different solar activity phases, is quite satisfactory. From a comparison of the magnetic fields as observed and calculated from the model at 1 AU, we conclude that the model magnetic field variations adequately explain the main features of the interplanetary magnetic field (IMF) radial, \(B_{\mathrm{x}}\), component cycle evolution at Earth’s orbit. The modeled magnetic field averaged over a Carrington rotation (CR) correlates with the IMF \(B_{\mathrm{x}}\) component also averaged over a CR at Earth’s orbit with a coefficient of 0.691, while for seven CR-averaged data, the correlation reaches 0.81. The radial profiles of the modeled magnetic field are compared with those of already existing models. In contrast to existing models, ours provides realistic magnetic-field radial distributions over a wide range of heliospheric distances at different cycle phases, taking into account the cycle variations of the solar toroidal and poloidal magnetic fields. The model is a good approximation of the cycle behavior of the magnetic field in the heliosphere. In addition, the decrease in the non-polar and polar photospheric magnetic fields is shown. Furthermore, the magnetic field during solar cycle maxima and minima decreased from Cycle 21 to Cycle 24. This implies that both the toroidal and poloidal components, and therefore the solar global magnetic field, decreased from Cycle 21 to Cycle 24.  相似文献   
36.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   
37.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   
38.
Climate Dynamics - In the original published version of the paper, the figures reported in Sect. 4 relating the proportion of rainfall in southern Australia that is due to each of the...  相似文献   
39.
Summary. Three-component seismograms of small local earthquakes recorded in the Peter the First Range of mountains near Garm, Tadzhikistan SSR, display shear-wave splitting similar to that previously observed near the North Anatolian Fault in Turkey. The Peter the First Range is in a region of compressional tectonics, whereas the North Anatolian Fault is a comparatively simple strike-slip fault. Detailed analysis of the Turkish records suggests that the splitting is diagnostic of crack-induced anisotropy caused by vertical microcracks aligned parallel to the direction of maximum compression. Preliminary examination of paper records from Garm shows that most shear waves arriving within the shear-wave window display shear-wave splitting, and that the polarizations of leading shear-waves are consistently aligned in a NE/SW direction. The area is complicated and the tectonics are not well-understood, but the NE/SW direction is approximately perpendicular to the compressional axis in many of the fault-plane mechanisms of the earthquakes. These earthquakes are usually at depths between 5 and 12 km, although there are some deeper events nearby.
Parallel shear-wave polarizations, such as those observed, are expected to indicate the strike of nearly vertical parallel microcracks, which would be aligned parallel to the direction of maximum compression. Thus the shear-wave polarizations in the Peter the First Range indicate that the directions of principal stress are reversed in the rock above the earthquake foci where thrust faulting is taking place.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号