全文获取类型
收费全文 | 194篇 |
免费 | 6篇 |
国内免费 | 21篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 20篇 |
地球物理 | 42篇 |
地质学 | 74篇 |
海洋学 | 17篇 |
天文学 | 50篇 |
综合类 | 1篇 |
自然地理 | 10篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2021年 | 8篇 |
2020年 | 1篇 |
2019年 | 5篇 |
2018年 | 11篇 |
2017年 | 12篇 |
2016年 | 9篇 |
2015年 | 10篇 |
2014年 | 9篇 |
2013年 | 12篇 |
2012年 | 10篇 |
2011年 | 16篇 |
2010年 | 16篇 |
2009年 | 12篇 |
2008年 | 15篇 |
2007年 | 19篇 |
2006年 | 10篇 |
2005年 | 5篇 |
2004年 | 7篇 |
2003年 | 4篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有221条查询结果,搜索用时 15 毫秒
91.
Alfred S. McEwen Brandon S. Preblich Natalia A. Artemieva Michelle Hurst Devon M. Burr 《Icarus》2005,176(2):351-381
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications. 相似文献
92.
93.
The role of the Spitsbergen shear zone in determining morphology,segmentation and evolution of the Knipovich Ridge 总被引:1,自引:1,他引:1
Crane Kathleen Doss Hany Vogt Peter Sundvor Eirik Cherkashov Georgy Poroshina Irina Joseph Devorah 《Marine Geophysical Researches》2001,22(3):153-205
In 1989–1990 the SeaMARC II side-looking sonar and swath bathymetric system imaged more than 80 000 km2 of the seafloor in the Norwegian-Greenland Sea and southern Arctic Ocean. One of our main goals was to investigate the morphotectonic
evolution of the ultra-slow spreading Knipovich Ridge from its oblique (115° ) intersection with the Mohns Ridge in the south
to its boundary with the Molloy Transform Fault in the north, and to determine whether or not the ancient Spitsbergen Shear
Zone continued to play any involvement in the rise axis evolution and segmentation.
Structural evidence for ongoing northward rift propagation of the Mohns Ridge into the ancient Spitsbergen Shear Zone (forming
the Knipovich Ridge in the process) includes ancient deactivated and migrated transforms, subtle V-shaped-oriented flank faults
which have their apex at the present day Molloy Transform, and rift related faults that extend north of the present Molloy
Transform Fault. The Knipovich Ridge is segmented into distinct elongate basins; the bathymetric inverse of the very-slow
spreading Reykjanes Ridge to the south. Three major fault directions are detected: the N-S oriented rift walls, the highly
oblique en-echelon faults, which reside in the rift valley, and the structures, defining the orientation of many of the axial
highs, which are oblique to both the rift walls and the faults in the axial rift valley.
The segmentation of this slow spreading center is dominated by quasi stationary, focused magma centers creating (axial highs)
located between long oblique rift basins. Present day segment discontinuities on the Knipovich Ridge are aligned along highly
oblique, probably strike-slip faults, which could have been created in response to rotating shear couples within zones of
transtension across the multiple faults of the Spitsbergen Shear Zone. Fault interaction between major strike slip shears
may have lead to the formation of en-echelon pull apart basins. The curved stress trajectories create arcuate faults and subsiding
elongate basins while focusing most of the volcanism through the boundary faults. As a result, the Knipovich Ridge is characterized
by Underlapping magma centers, with long oblique rifts.
This style of basin-dominated segmentation probably evolved in a simple shear detachment fault environment which led to the
extreme morphotectonic and geophysical asymmetries across the rise axis. The influence of the Spitsbergen Shear Zone on the
evolution of the Knipovich Ridge is the primary reason that the segment discontinuities are predominantly volcanic.
Fault orientation data suggest that different extension directions along the Knipovich Ridge and Mohns Ridge (280° vs. 330°,
respectively) cause the crust on the western side of the intersection of these two ridges to buckle and uplift via compression
as is evidenced by the uplifted western wall province and the large 60 mGal free air gravity anomalies in this area.
In addition, the structural data suggest that the northwards propagation of the spreading center is ongoing and that a `normal'
pure shear spreading regime has not evolved along this ridge.
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
94.
Mikhail V. Flint Irina N. Sukhanova Alexander I. Kopylov Sergei G. Poyarkov Terry E. Whitledge 《Deep Sea Research Part II: Topical Studies in Oceanography》2002,49(26)
We studied the effect of four types of fronts, the coastal front, the middle front, the shelf partition front and the shelf break front on the quantitative distribution and the composition of plankton communities in the Pribilof area of the eastern Bering Sea shelf in late spring and summer of 1993 and 1994. The coastal fronts near St. Paul and St. George Islands and the coastal domains encircled by the fronts featured specific taxonomic composition of planktonic algae, high abundance and production of phytoplankton, as well as large numbers of heterotrophic nanoplankton. The coastal fronts also were characterized by high values of total mesozooplankton biomass, high concentrations of Calanus marshallae, as well as relatively high abundances of Parasagitta setosa and Euphausiacea compared to surrounding shelf waters. We hypothesize that wind-induced erosion of a weak thermocline in the inner part of the coastal front as well as transfrontal water exchange in subthermocline layers result in nutrient enrichment of the euphotic layer in the coastal fronts and coastal domains in summer time. This leads to prolonged high primary production and high phytoplankton biomass. In this paper a new type of front—the shelf partition front located 45–55 km to the north-east off St. Paul Island—is described, which is assumed to be formed by the flux of oceanic domain waters onto the shelf. This front features a high abundance of phytoplankton and a high level of primary production compared to the adjacent middle shelf. Near the southwestern periphery of the front a mesozooplankton peak occurred, composed of C. marshallae, with biomass in the subthermocline layer, reaching values typical for the shelf break front and the highest for the area. High abundance of phyto- and zooplankton as well as heterotrophic nanoplankton and elevated primary production were most often observed in the area adjacent to the shelf break front at its oceanic side. The phyto- and mesozooplankton peaks here were formed by oceanic community species. The summer levels of phytoplankton numbers, biomass and primary production in the shelf break frontal area were similar to those reported for the outer and middle shelf during the spring bloom and the coastal domains and coastal fronts in summer. In the environment with a narrow shelf to the south of St. George Island, the mesozooplankton peak was observed at the inner side of the shelf break front as close as 20 km from the island shore and was comprised of a “mixed” community of shelf and oceanic species. The biomass in the peak reached the highest values for the Pribilof area at 2.5 g mean wet weight m−3 in the 0–100 m layer. Details of the taxonomic composition and the numbers and production of phytoplankton hint at the similarity of processes that affect the phytoplankton summer community in the coastal domains of the islands, at the coastal fronts, and at the oceanic side of the shelf break front. The middle front was the only one that had no effect on plankton composition or its quantitative characteristics in June and July. Location of a variety of frontal productive areas within 100 km of the Pribilof Islands creates favorable foraging habitat for higher trophic level organisms, including sea birds and marine mammals, populating the islands. 相似文献
95.
Mikko Kaasalainen Petr Pravec Lenka Šarounová Jenni Virtanen Anders Erikson Josef ?urech Johan S.V. Lagerros Claes-Ingvar Lagerkvist John Davies Peter Kušnirák Vasilij G. Shevchenko Irina N. Belskaya 《Icarus》2004,167(1):178-196
We present new observations and models of the shapes and rotational states of the eight near-Earth Asteroids (1580) Betulia, (1627) Ivar, (1980) Tezcatlipoca, (2100) Ra-Shalom, (3199) Nefertiti, (3908) Nyx, (4957) Brucemurray, and (5587) 1990 SB. We also outline some of their solar phase curves, corrected to common reference geometry with the models. Some of the targets may feature sizable global nonconvexities, but the observable solar phase angles were not sufficiently high for confirming these. None is likely to have a very densely cratered surface. We discuss the role of the intermediate topographic scale range in photometry, and surmise that this scale range is less important than large or small scale lengths. 相似文献
96.
Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data 总被引:4,自引:0,他引:4
Andrzej Krankowski Irina Zakharenkova Anna Krypiak-Gregorczyk Irk I. Shagimuratov Pawel Wielgosz 《Journal of Geodesy》2011,85(12):949-964
This research is motivated by the recent IGS Ionosphere Working Group recommendation issued at the IGS 2010 Workshop held
in Newcastle, UK. This recommendation encourages studies on the evaluation of the application of COSMIC radio occultation
profiles for additional IGS global ionosphere map (GIM) validation. This is because the reliability of GIMs is crucial to
many geodetic applications. On the other hand, radio occultation using GPS signals has been proven to be a promising technique
to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. However,
systematic validation work is still needed before using this powerful technique for sounding the ionosphere on a routine basis.
In this paper, we analyze the properties of the ionospheric electron density profiling retrieved from COSMIC radio occultation
measurements. A comparison of radio occultation data with ground-based measurements indicates that COSMIC profiles are usually
in good agreement with ionosonde profiles, both in the F2 layer peak electron density and the bottom side of the profiles.
For this comparison, ionograms recorded by European ionospheric stations (DIAS network) in 2008 were used. 相似文献
97.
98.
Vladimir V. Ivanov Igor V. Polyakov Igor A. Dmitrenko Edmond Hansen Irina A. Repina Sergey A. Kirillov Cecillie Mauritzen Harper Simmons Leonid A. Timokhov 《Deep Sea Research Part I: Oceanographic Research Papers》2009,56(1):1-14
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached. 相似文献
99.
In this paper we present specific features of TEC (total electron content of the ionosphere) behavior as possible precursors of Kythira (Southern Greece) earthquake of January
8, 2006 (M6.8). For this purpose, we used both the TEC data of GPS-IGS stations nearest to the epicenter, and TEC maps over Europe. The favorable circumstance for this analysis was the quiet geomagnetic situation during the period prior
to the earthquake. One day before the earthquake, a characteristic anomaly was found out as the day-time significant increase
of TEC at the nearest stations, up to the value of 50% relative to the background condition. To estimate the spatial dimensions
of seismo-ionospheric anomaly, the differential mapping method was used. The ionosphere modification as a cloud-like increase
of electron concentration situated in the immediate vicinity of the forthcoming earthquake epicenter has been revealed. The
amplitude of modification reached the value of 50% relative to the non-disturbed condition and was in existence from 10:00
till 22:00 UT. The area of significant TEC enhancement had a size of about 4000 km in longitude and 1500 km in latitude. 相似文献
100.
Geoffrey P. Glasby Valery V. Maslennikov Irina A. Prozherova Sergey I. Petukhov 《Resource Geology》2008,58(3):313-324
Chemical analysis of 60 samples from the Jusa and Barsuchi Log volcanogenic massive sulfide (VMS) deposits by inductively coupled plasma–mass spectrometry shows that, on average, the Jusa deposit is more enriched in the chalcophilic elements than the Barsuchi Log deposit, whereas the Barsuchi Log deposit is more enriched in the lithogenous elements and Te. In addition, the yellow ores in these deposits are more enriched on average in Cu, As and Mo and the black ores more enriched in Zn, Ga, Cd, Sb, Ba , Hg and Pb relative to each other. Both these deposits are similar in composition to the Kuroko deposits of NE Honshu and may be considered to be analogs of these deposits. The Kuroko deposits, however, contain much higher concentrations of As, Ag, Sb, Ba, Hg and lower contents of Te on average than the Jusa and Barsuchi Log deposits. Based on the higher contents of Te in the Barsuchi Log deposit compared to the Jusa deposit, as well as on textural considerations, it is concluded that the Barsuchi Log deposit is intermediate between the Urals- and Kuroko-type deposits, whereas the Jusa deposit is more analogous to the Kuroko-type deposits. Based on the compositional data presented here, the Jusa and Barsuchi Log deposits may be described as Zn-Pb-Cu-Ba deposits rather than as Zn-Cu-Ba deposits, as the Baimak-type deposits of the west Magnitogrosk zone have previously been described. 相似文献