There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers :a core complex consisting of Mesoproterozoic schist sequence , a ductile middle slab consisting of Paleozoic meta-sedimentary-basalt characterized by the development of "folding layer" and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimp 相似文献
The continent is the second largest carbon sink on Earth’s surface. With the diversification of vascular land plants in the late Paleozoic, terrestrial organic carbon burial is represented by massive coal formation, while the development of soil profiles would account for both organic and inorganic carbon burial. As compared with soil organic carbon, inorganic carbon burial, collectively known as the soil carbonate, would have a greater impact on the long-term carbon cycle. Soil carbonate would have multiple carbon sources, including dissolution of host calcareous rocks, dissolved inorganic carbon from freshwater, and oxidation of organic matter, but the host calcareous rock dissolution would not cause atmospheric CO2 drawdown. Thus, to evaluate the potential effect of soil carbonate formation on the atmospheric pCO2 level, different carbon sources of soil carbonate should be quantitatively differentiated. In this study, we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop, consisting of limestone of the early Paleogene Guanzhuang Group in North China. Based on the C and Mg isotope data, we developed a numerical model to quantify the carbon source of calcite veins. The modeling results indicate that 4–37 wt% of carbon in these calcite veins was derived from atmospheric CO2. The low contribution from atmospheric CO2 might be attributed to the host limestone that might have diluted the atmospheric CO2 sink. Nevertheless, taking this value into consideration, it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2 within 2000 years, i.e., soil carbonate alone would sequester all atmospheric CO2 within 1 million years. Finally, our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.
The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate. 相似文献
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman's plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ~(34)S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide. 相似文献
The Songpan-Garze fold belt, located in the eastern part of the Tibetan Plateau, covers a huge triangular area bounded by the Yangtze (South China), the North China and the Tibetan Plateau blocks. In the northeastern part of the Songpan-Garze fold belt, the Yanggon and Maoergai granitoids provide insights into regional tectono-magmatic events, basement nature and tectonic evolution. U–Pb zircon SHRIMP dating shows that the Yanggon and Maoergai granitoids have magmatic crystallization ages of 221 ± 3.8 Ma and 216 ± 5.7 Ma, respectively. Both the granitoids display adakitic geochemical signatures, suggesting that their magma was derived from partial melting of thickened lower crust. Pb–Sr–Nd isotopic compositions for granitoids reveal that there is an unexposed Proterozoic basement in the Songpan-Garze belt, which has an affinity with the Yangtze block. During development of the Paleo-Tethys ocean, the basement of the Songpan-Garze belt would be a peninsula approaching the Paleo-Tethys ocean from the Yangtze block. 相似文献