首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37311篇
  免费   597篇
  国内免费   580篇
测绘学   940篇
大气科学   3086篇
地球物理   7443篇
地质学   12285篇
海洋学   3397篇
天文学   8803篇
综合类   122篇
自然地理   2412篇
  2021年   199篇
  2020年   260篇
  2019年   263篇
  2018年   615篇
  2017年   568篇
  2016年   885篇
  2015年   625篇
  2014年   852篇
  2013年   1896篇
  2012年   1039篇
  2011年   1460篇
  2010年   1200篇
  2009年   1785篇
  2008年   1586篇
  2007年   1505篇
  2006年   1420篇
  2005年   1292篇
  2004年   1225篇
  2003年   1175篇
  2002年   1101篇
  2001年   982篇
  2000年   995篇
  1999年   926篇
  1998年   843篇
  1997年   843篇
  1996年   724篇
  1995年   649篇
  1994年   564篇
  1993年   518篇
  1992年   513篇
  1991年   480篇
  1990年   484篇
  1989年   422篇
  1988年   406篇
  1987年   453篇
  1986年   439篇
  1985年   525篇
  1984年   587篇
  1983年   564篇
  1982年   526篇
  1981年   467篇
  1980年   439篇
  1979年   401篇
  1978年   414篇
  1977年   360篇
  1976年   326篇
  1975年   336篇
  1974年   337篇
  1973年   344篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We study the torque on low-mass protoplanets on fixed circular orbits, embedded in a protoplanetary disc in the isothermal limit. We consider a wide range of surface density distributions including cases where the surface density increases smoothly outwards. We perform both linear disc response calculations and non-linear numerical simulations. We consider a large range of viscosities, including the inviscid limit, as well as a range of protoplanet mass ratios, with special emphasis on the co-orbital region and the corotation torque acting between disc and protoplanet.
For low-mass protoplanets and large viscosity, the corotation torque behaves as expected from linear theory. However, when the viscosity becomes small enough to enable horseshoe turns to occur, the linear corotation torque exists only temporarily after insertion of a planet into the disc, being replaced by the horseshoe drag first discussed by Ward. This happens after a time that is equal to the horseshoe libration period reduced by a factor amounting to about twice the disc aspect ratio. This torque scales with the radial gradient of specific vorticity, as does the linear torque, but we find it to be many times larger. If the viscosity is large enough for viscous diffusion across the co-orbital region to occur within a libration period, we find that the horseshoe drag may be sustained. If not, the corotation torque saturates leaving only the linear Lindblad torques. As the magnitude of the non-linear co-orbital torque (horseshoe drag) is always found to be larger than the linear torque, we find that the sign of the total torque may change even for mildly positive surface density gradients. In combination with a kinematic viscosity large enough to keep the torque from saturating, strong sustained deviations from linear theory and outward or stalled migration may occur in such cases.  相似文献   
992.
Rotating black holes can power the most extreme non-thermal transient sources. They have a long-duration viscous time-scale of spin-down, and produce non-thermal emissions along their spin-axis, powered by a relativistic capillary effect. We report on the discovery of exponential decay in Burst and Triensient Source Experiment (BATSE) light curves of long gamma-ray bursts (GRBs) by matched filtering, consistent with a viscous time-scale, and identify ultra-high energy cosmic rays (UHECRs) about the Greisen–Zatsepin–Kuzmin (GZK) threshold with linear acceleration of ion contaminants along the black hole spin-axis, consistent with black hole masses and lifetimes of Fanaroff–Riley type II (FR II) active galactic nuclei (AGN). We explain the absence of UHECRs from BL Lac objects due to UHECR emissions preferably at appreciable angles away from the black hole spin-axis. Black hole spin may be the key to unification of GRBs and their host environments, and to AGN and their host galaxies. Our model points to long-duration bursts in radio from long GRBs without supernovae and gravitational waves from all long GRBs.  相似文献   
993.
994.
995.
We have constructed an analytical model of active galactic nuclei (AGN) feedback and studied its implications for elliptical galaxies and galaxy clusters. The results show that momentum injection above a critical value will eject material from low-mass elliptical galaxies, and leads to an X-ray luminosity, L X, that is  ∝σ8−10  , depending on the AGN fuelling mechanism, where σ is the velocity dispersion of the hot gas. This result agrees well with both observations and semi-analytic models. In more massive ellipticals and clusters, AGN outflows quickly become buoyancy dominated. This necessarily means that heating by a central cluster AGN redistributes the intracluster medium (ICM) such that the mass of hot gas, within the cooling radius, should be  ∝ L X(< r cool)/[ g ( r cool)σ]  , where   g ( r cool)  is the gravitational acceleration at the cooling radius. This prediction is confirmed using observations of seven clusters. The same mechanism also defines a critical ICM cooling time of  ∼0.5 Gyr  , which is in reasonable agreement with recent observations showing that star formation and AGN activity are triggered below a universal cooling time threshold.  相似文献   
996.
997.
We present BVR polarimetric study of the cool active star LO Pegasi (LO Peg) for the first time. LO Peg was found to be highly polarized among the cool active stars. Our observations yield average values of polarization in LO Peg:   PB = 0.387 ± 0.004 per cent, θB= 88°± 1°; PV = 0.351 ± 0.004 per cent, θV= 91°± 1°  and   PR = 0.335 ± 0.003 per cent, θR= 91°± 1°  . Both the degree of polarization and the position angle are found to be variable. The semi-amplitude of the polarization variability in B, V and R bands is found to be  0.18 ± 0.02, 0.13 ± 0.01  and  0.10 ± 0.02  per cent, respectively. We suggest that the levels of polarization observed in LO Peg could be the result of scattering of an anisotropic stellar radiation field by an optically thin circumstellar envelope or scattering of the stellar radiation by prominence-like structures.  相似文献   
998.
999.
We present low-frequency observations with the Giant Metrewave Radio Telescope of three giant radio sources (GRSs: J0139+3957, J0200+4049 and J0807+7400) with relaxed diffuse lobes which show no hotspots and no evidence of jets. The largest of these three, J0200+4049, exhibits a depression in the centre of the western lobe, while J0139+3957 and J0807+7400 have been suggested earlier by Klein et al. and Lara et al., respectively, to be relic radio sources. We estimate the ages of the lobes. We also present Very Large Array observations of the core of J0807+7400, and determine the core radio spectra for all three sources. Although the radio cores suggest that the sources are currently active, we explore the possibility that the lobes in these sources are due to an earlier cycle of activity.  相似文献   
1000.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号