首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   11篇
  国内免费   2篇
测绘学   4篇
大气科学   19篇
地球物理   84篇
地质学   150篇
海洋学   22篇
天文学   26篇
综合类   3篇
自然地理   32篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   9篇
  2019年   5篇
  2018年   10篇
  2017年   17篇
  2016年   13篇
  2015年   8篇
  2014年   15篇
  2013年   19篇
  2012年   11篇
  2011年   10篇
  2010年   13篇
  2009年   13篇
  2008年   16篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   9篇
  2001年   10篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   9篇
  1979年   2篇
  1978年   5篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1971年   5篇
  1967年   3篇
  1966年   2篇
  1963年   2篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
排序方式: 共有340条查询结果,搜索用时 390 毫秒
91.
The deposition of ochreous is common by a consequence of acid mine drainage (AMD). The ochreous precipitated from the AMD sites around Tertiary coalfield of Assam, India were collected and characterized by X-ray diffractometry (XRD), Fe to S molar ratio, ammonium oxalate acid (pH 3.0) extraction, fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The ochreous mainly consists of goethite, schwertmannite, ferrihydrite and jarosite. Mineralogy of ochreous was controlled by the pH whereas formation of ferrihydrite was favored at high organic carbon content. Role of bacteria for the formation of secondary minerals was observed. Mobility of metals was controlled by the ochreous, and they were also retained during the process of phase transformation of poorly ordered iron-oxyhydroxysulfates into the stable forms.  相似文献   
92.
The inflow of Atlantic Water to the Nordic seas from mid–late Younger Dryas to earliest Holocene (12 450–10 000 a BP) is reconstructed on the basis of a high‐resolution core (LINK14) from 346 m water depth on the east Faroe shelf. We have analysed the distribution of planktic and benthic foraminifera, stable isotopes and ice‐rafted debris (IRD), and calculated absolute temperatures and salinities by transfer functions. During the investigated time period there was almost continuous inflow of Atlantic Water to the Nordic seas. Deposition of IRD during the mid–late Younger Dryas and Pre‐Boreal coolings indicates the presence of melting icebergs and that summer sea surface temperatures were low. The east–west temperature gradient across the Faroe–Shetland Channel was much steeper than today. The cold conditions around the Faroe Islands are attributed to stronger East Greenland and East Icelandic currents than at present. The near‐continuous inflow of Atlantic Water is consistent with published evidence suggesting that deep convection took place in the Nordic seas, although the convection sites probably had shifted to a more easterly position than at present. Around the time of deposition of the Saksunarvatn Tephra c. 10 350 a BP, sea surface temperatures increased to the present level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
93.
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.  相似文献   
94.
This paper, firstly, shows the distribution of arsenic-contaminated groundwater in Samta village. This village, which is in Jessore district in Bangladesh, was chosen as a model village for investigating the mechanism of groundwater contamination. 90% of the tube wells in this village had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tube wells with arsenic concentrations of over 0.50 mg/l were distributed in the southern part of the village with a belt-like shape from east to west. Secondly, groundwater distribution is discussed with respect to its flow and the high arsenic zone (As≥0.50 mg/l) agrees well with the drifting zone of the groundwater. Furthermore, arsenic-free water supply systems suitable for a small area in the village have been developed. A pond sand filter (PSF) system which purifies pond water is discussed in this paper. Prior to the construction of the PSF, the water quality in ponds was examined for arsenic levels. The inflow of drainage from the tube wells was found to be the major cause of arsenic contamination of pond water. The PSF installed in Samta is working very well and produces a good quality of treated water.  相似文献   
95.
Estimations of porosity and permeability from well logs are important yet difficult tasks encountered in geophysical formation evaluation and reservoir engineering. Motivated by recent results of artificial neural network (ANN) modelling offshore eastern Canada, we have developed neural nets for converting well logs in the North Sea to porosity and permeability. We use two separate back-propagation ANNs (BP-ANNs) to model porosity and permeability. The porosity ANN is a simple three-layer network using sonic, density and resistivity logs for input. The permeability ANN is slightly more complex with four inputs (density, gamma ray, neutron porosity and sonic) and more neurons in the hidden layer to account for the increased complexity in the relationships. The networks, initially developed for basin-scale problems, perform sufficiently accurately to meet normal requirements in reservoir engineering when applied to Jurassic reservoirs in the Viking Graben area. The mean difference between the predicted porosity and helium porosity from core plugs is less than 0.01 fractional units. For the permeability network a mean difference of approximately 400 mD is mainly due to minor core-log depth mismatch in the heterogeneous parts of the reservoir and lack of adequate overburden corrections to the core permeability. A major advantage is that no a priori knowledge of the rock material and pore fluids is required. Real-time conversion based on measurements while drilling (MWD) is thus an obvious application.  相似文献   
96.
Ohne Zusammenfassung English Summary: Lake trout and its prey fauna in Swiss mountain lakes) Die Nahrungsfauna wurde vonGrim⇘s, Nahrungs?kologie und Wachstum der Fische vonNilsson bearbeitet.  相似文献   
97.
ABSTRACT

Hydrogeological hazards are increasingly causing damage worldwide due to climatic and socio-economic changes. Building resilient communities is crucial to reduce potential losses. To this end, one of the first steps is to understand how people perceive potential threats around them. This study aims at exploring how risk awareness of, and preparedness to, face hydrological hazards changes over time. A cohort study was carried out in two villages in the northeastern Italian Alps, Romagnano and Vermiglio, affected by debris flows in 2000 and 2002. Surveys were conducted in 2005 and 2018, and the results compared. The survey data show that both awareness and preparedness decreased over time. We attribute this change to the fact that no event had occurred in a long time and to a lack of proper risk communication strategies. The outcomes of this study contribute to socio-hydrological modelling by providing empirical data on human behaviour dynamics.  相似文献   
98.
Zusammenfassung Seit dem Anfang dieses Jahrhunderts sind mehrere Versuche gemacht worden, die Gesteine des baltischen Schildes nach Bildungs- und Deformationsperioden (Zyklen, Orogenesen) einzuteilen. Heute sprechen die meisten schwedischen Petrologen von Präsvekofennokarelium (oder Präsvekokarelium; > 2500 M. J.), Svekofennokarelium (oder Svekokarelium; 1750–2500 M. J.), Gotium (1150 bis 1750 M. J.) und Dalslandium (900–1150 M. J.). Das Svekofennokarelium scheint mindestens zwei Orogenesen zu umfassen — die svekofennidische (1800–2000 M. J.) und eine ältere Orogenese. Dagegen soll das Gotium hauptsächlich eine anorogene Ära sein.Die meisten der gotischen Gesteine sind Vulkanite und Granitoide. Da unter den Vulkaniten Ignimbrite häufig sind, interpretiert man sie als anatektische Gesteine, die vom svekofennidischen Orogen stammen, was auch für die Mehrzahl der gotischen Granitoide gilt. Die Eruption der Vulkanite hat im Zeitraum zwischen 1600 und 1750 M. J. stattgefunden, die Intrusion der Granitoide zwischen 1450 und 1750 M. J. (nachWelin u. Mitarb.). Die jüngsten gotischen Granitoide sind die Karlshamn-Spinkamåla-Halengranite in Blekinge und Schonen sowie die zweite Generation der Linagranite in Norrbotten und Lappland. Im Gegensatz zu den anderen gotischen Graniten werden diese von beträchtlichen Pegmatitintrusionen begleitet und können deshalb als digitale palingenetische Produkte eines postsvekofennidischen Orogens gedeutet werden.Während des Gotiums haben auch Eruptionen basischer Magmen stattgefunden, was besonders auf den späteren Teil des Zeitabschnittes, das Jotnium (1150 bis 1300 M. J.), zutrifft, als die anatektischen Magmen erschöpft waren. Die jotnischen Basite sind Diabase mit wenig Chrom ( 0,006% in normalen Gesteinen). Im südlichen Schweden kommt eine ältere Diabasart mit schwarz pigmentiertem Plagioklas (Hyperit) vor, die um 1250 M. J. tektonisiert wurde, während die jüngeren jotnischen Diabase keine tektonischen Veränderungen zeigen.Die jotnischen Sandsteine und Konglomerate sind vom Verfasser in Härjedalen, mittleres Schweden, untersucht worden und sind dort durch Einlagerungen jaspilitischer und tuffitischer Art gekennzeichnet. Die Gerölle des basalen Konglomerats zeigen marginale thermale Umwandlungen (Abb. 2). Es scheint darum, daß sich die subjotnische vulkanische Aktivität bis ins Jotnium fortgesetzt hat. Da einer der jüngsten subjotnischen Porphyre in Dalekarlien und Härjedalen 1670 M. J. alt ist und da eine Probe dalekarlischen jotnischen Sandsteins die Alterszahl 1185 M. J. ergeben hat, muß man mit einer beträchtlichen Länge der jotnischen Sedimentationsperiode rechnen.
Since the early twentieth several attempts have been made to divide the rocks of the Baltic shield into periods of development and deformation, viz. geological cycles or orogenies. Nowadays most Swedish petrologists distinguish between the pre-Svecofennokarelian (or the pre-Svecokarelian; > 2,500 M. Y.), the Svecofennokarelian (or the Svecokarelian; 1,750–2,500 M. Y.), the Gothian (1,150 –1,750 M. Y.), and the Dalslandian (900–1,150 M. Y.). The Svecofennokarelian seems to comprise at least two orogenies — the Svecofennian one (1,800–2,000 M. Y.) and an older one. The Gothian, on the contrary, is essentially an anorogenic era.Most Gothian rocks are acid volcanics and granitoids. Among the former ignimbrites are common. They have thus been interpreted as anatectic rocks originating from the Svecofennian orogeny, as well as have most Gothian granitoids, too. The extrusion of volcanics have ranged between 1,600 and 1,750 M. Y., the intrusion of granitoids between 1,450 and 1,750 M. Y., according to Eric Welin and co-workers. Youngest among the latter are the Karlshamn-Spinkamåla-Halen granites in Blekinge and Scania as well as the second generation of Lina granite in Norrbotten and Lappland. Contrary to the other Gothian granitoids these are associated with considerable amounts of pegmatite and could accordingly be suspected to represent distal palingenic products of an orogeny younger than the Svecofennian one.During the Gothian basic magma has also erupted, especially in Jotnian time, near the end of the era (1,150–1,300 M. Y.), when the anatectic magma was exhausted. The Jotnian basites are dolerites poor in chromium (60 p.p.m. in undifferentiated rocks). In Southern Sweden an older variety of dolerite with black-pigmented plagioclase (hyperite) was tectonized about 1,250 M. Y. ago, whereas the younger dolerites have escaped tectonization.The Jotnian sandstone and conglomerate have been examined by the writer in Härjedalen, Central Sweden, and have there been shown to contain basal intercalations of jaspilite and tuffites. Furthermore, the pebbles of the basal conglomerates have marginal rims indicating thermal alterations (Fig. 2). The sub-Jotnian volcanic activity seems thus to have proceeded into the Jotnian. As one of the youngest sub-Jotnian porphyries in Dalecarlia and Härjedalen has given the figure 1,670 M. Y. and one sample of Dalecarlian Jotnian sandstone has an age as low as 1,185 M. Y., the period of sedimentation ought to have been very long.

Résumé Dès le début du XXème siècle, ont été faites plusieurs tentatives de subdivision des roches du Bouclier baltique en périodes de mise en place et de déformation, c'est-à-dire en cycles géologiques ou orogénèses. Actuellement, la plupart des pétrographes suédois font la distinction entre le Pré-Svécofennocarélien (ou Pré-Svécocaré lien: > 2,500 millions d'années), le Svécofennocarélien (ou Svécocarélien: 1,750–2,500 M. A.), le Gothien (1,150–1,750 M. A.) et le Dalslandien (900–1,150 M. A.). Le Svécofennocarélien semble comprendre au moins deux orogénèses: l'orogénèse svécofennique (1,800–2,000 M. A.) et une autre plus ancienne. Par contre, le Gothien ne correspond qu'à une seule orogénèse.Les roches du Gothien sont en majorité des granitoïdes et des Vulcanites acides; parmi ces dernières prédominent des ignimbrites: Elles ont été considérées comme des roches anatectiques provenant de l'orogénèse svécofennique. La plupart des roches granitoïdes du Gothien auraient la même origine. L'extrusion des Vulcanites a eu lieu dans une période de 1,750 à 1,600 M. A., l'intrusion des granitoïdes s'est produite entre 1,750 et 1,450 M. A. (d'après Eric Welin et ses collaborateurs). Parmi ces dernières roches, les plus jeunes sont les granites de Karlshamn-Spinkamåla-Halen en Blekinge et en Scanie ainsi que la deuxième génération du granite de Lina en Bothnie septentrionale et en Laponie. Contrairement aux autres roches granitoïdes du Gothien, celles-ci sont associées à de grandes quantités de pegmatites et pourraient, par conséquent, être considerées comme les produits palingénétiques provenau d'une orogénèse plus jeune que l'orogénèse svécofennique.Durant le Gothien — plus précisément en fin du Jotnien (1,150–1,300 M. A.) lorsque le magma anatectique s'éleva — ont fait éruption des masses magmatiques basiques. Les roches basiques du Jotnien sont des dolorites pauvres en chrome ( 60 ppm teneur en chrome des roches quelconques). En Suède méridionale, une variété plus ancienne de dolérites, avec plagioclase à pigment noir (hypérite), a été tectonisée il y a environ 1,250 millions d'années, tandis que les dolérites plus récentes n'ont subi aucune déformation.Les grès et les conglomérats du Jotnien, étudiés par l'auteur dans la vallées de Härje (Härjedalen) en Suède centrale, comportent des intercalations basales de jaspilites et de tuffites. De plus, les galets du conglomérat basal présentent des modifications corticales indiquant des altérations thermiques: l'activité volcanique sub-jotnienne semblerait donc s'être prolongée jusque dans le Jotnien. Comme l'une des plus jeunes porphyrites sub-jotniennes de Dalécarlie et de Härjedalen date de 1,670 millions d'années et qu'un échantillon de grès jotnien de Dalécarlie remonte à 1,185 millions d'années, il est possible d'affirmer que la période de sédimentation a dû être très longue.

( ), svekofennokarelium ( Präsvekokarelium 2500 ), Svekofennokarelium ( Svekokarelium; 1750–2500 ), Gotium (1150–1750 ) Dalslandium (900–1150 ). Svekofennokarelium , , - , : Svekofennidische (1800–2000 ) — . Gotium, , . Gotium . . . , , , Svekofennidmm'a, Gotium. 1600–1750 , — 1450–1750 ( WELIN .). KarlshamnSpmkamala-Halenga Blekinge Schonen, Lina** Norrbotten . , , postsvekofennidischen . , — Gotium (1150–1300 ), . Jotnium ( < 0,006 %) (), 1250 , Jotnium . Jotnium Härjedalen, , . (. 2). , , Jotnium, Jotnium. . . Dalekarlien Härjedalen 1670 , Dalekarlien — 1185 , Jotnium .
  相似文献   
99.
Electronic absorption spectra have been measured at room temperature and pressure for polycrystalline samples of (Mg, Fe)SiO3 silicate perovskites synthesized by multi-anvil device. One strong near-infrared band at about 7000 cm-1 and several weak bands in the visible region were found. The near-infrared band at 7000 cm-1 is assigned to a spin-allowed transition of Fe2+ at the 8–12 coordinated site in perovskite. However, definite assignments of the weak bands in the visible region are difficult because of their low intensities and the scattering effect at the gain boundaries. Crystal field calculations for Fe2+ at different sites in perovskite have been carried out based on the crystal structure data. The results agree with the assignment of Fe2+ to the 8–12 coordinated site in perovskite. Crystal field stabilization energy of Fe2+ with coordination number of 8 in perovskite is 3332 cm-1 which is small compared to the octahedral site of magnesiowüstite (4320 cm-1), another important lower-mantle mineral.  相似文献   
100.
Two-dimensional seismic modelling has been undertaken on an overall progradational succession of sloping mudstone and sandstone units from the Palaeogene of Spitsbergen. The modelling shows that the main geometric features of the section would be resolved at 1500 m depth (with frequencies below 60 Hz, which is common in seismic data at these depths). However, interference between the base and top of lithological units gives lateral amplitude variations and discrepancies between the seismic image and the geometrical model. This is particularly prominent in low-frequency models. Terminations of reflectors, resembling toplap and onlap, may be interpreted, but are artefacts of the general convergence of lithological units present in the geometrical model. The geological section causes a seismic pattern resembling sigmoid progradational seismic facies. Two-dimensional seismic modelling is an efficient tool in bridging the gap between outcrop observations and subsurface data. Hence, modelled outcrop sections are important as reference points' for improved seismic stratigraphic interpretation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号