首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   14篇
地球物理   11篇
地质学   29篇
海洋学   5篇
天文学   19篇
自然地理   16篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1973年   1篇
  1972年   1篇
  1952年   1篇
排序方式: 共有96条查询结果,搜索用时 203 毫秒
91.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
92.
The Haverö ureilite fell on August 2, 1971 on the Island of Haverö, Finland, lat 22° 03‘ 43“ E., long 60° 14’ 44” N. The meteorite contains curved open fractures partly filled with kamacite foils or drops, clusters of olivine mosaic with preferred orientation, very fine-lamellar polysynthetic twinned clino-***bronzite and carbonaceous matter as laths up to 4 mm in length. The carbon laths are in preferred orientation and contain in addition to graphite, kamacite, chromite and diamonds. The petrology, textural features and origin are discussed.  相似文献   
93.
94.
Significant climatic changes over Northern Eurasia during the 20th century have been reflected in numerous variables of economic, social, and ecological interest, including the natural frequency of forest fires. For the former USSR, we are now using the Global Daily Climatology Network and a new Global Synoptic Data Network archive, GSDN, created jointly by U.S. National Climatic Data Center and Russian Research Institute for Hydrometeorological Information. Data from these archives (approximately 1500 of them having sufficiently long meteorological time series suitable for participation in our analyses) are employed to estimate systematic changes in indices used in the United States and Russia to assess potential forest fire danger. We use four indices: (1) Keetch–Byram Drought Index, (KBDI; this index was developed and widely used in the United States); (2) Nesterov, (3) Modified Nesterov, and (4) Zhdanko Indices (these indices were developed and widely used in Russia). Analyses show that after calibration, time series of the days with increased potential forest fire danger constructed using each of these three indices (a) are well correlated and (b) deliver similar conclusions about systematic changes in the weather conditions conducive to forest fires. Specifically, over the Eastern half of Northern Eurasia (Siberia and the Russian Far East) statistically significant increases in indices that characterize the weather conditions conducive to forest fires were found. These areas coincide with the areas of most significant warming during the past several decades south of the Arctic Circle. West of the Ural Mountains, the same indices show a steady decrease in the frequency of “dry weather summer days” during the past 60 yr. This study is corroborated with available statistics of forest fires and with observed changes in drought statistics in agricultural regions of Northern Eurasia.  相似文献   
95.
We use recent advances in time series econometrics to estimate the relation among emissions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models are estimated and specified to answer two questions; (1) does human activity affect global surface temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful relation between radiative forcing and global surface temperature. A simple model based on these results indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the change in temperature over the last 130 years. The regression results also indicate that increases in surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere in a way that increases its atmospheric concentration. Finally, the regression results for methane hint that higher temperatures may increase its atmospheric concentration, but this effect is not estimated precisely.  相似文献   
96.
Changes in indices related to frost and snow in Europe by the end of the twenty-first century were analyzed based on experiments performed with seven regional climate models (RCMs). All the RCMs regionalized information from the same general circulation model (GCM), applying the IPCC-SRES A2 radiative forcing scenario. In addition, some simulations used SRES B2 radiative forcing and/or boundary conditions provided by an alternative GCM. Ice cover over the Baltic Sea was examined using a statistical model that related the annual maximum extent of ice to wintertime coastal temperatures. Fewer days with frost and snow, shorter frost seasons, a smaller liquid water equivalent of snow, and milder sea ice conditions were produced by all model simulations, irrespective of the forcing scenario and the driving GCM. The projected changes have implications across a diverse range of human activities. Details of the projections were subject to differences in RCM design, deviations between the boundary conditions of the driving GCMs, uncertainties in future emissions and random effects due to internal climate variability. A larger number of GCMs as drivers of the RCMs would most likely have resulted in somewhat wider ranges in the frost, snow and sea ice estimates than those presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号