首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   31篇
  国内免费   7篇
测绘学   6篇
大气科学   36篇
地球物理   122篇
地质学   157篇
海洋学   32篇
天文学   116篇
自然地理   51篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   19篇
  2016年   26篇
  2015年   17篇
  2014年   22篇
  2013年   27篇
  2012年   27篇
  2011年   32篇
  2010年   27篇
  2009年   23篇
  2008年   23篇
  2007年   25篇
  2006年   23篇
  2005年   15篇
  2004年   23篇
  2003年   17篇
  2002年   17篇
  2001年   10篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   7篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有520条查询结果,搜索用时 15 毫秒
511.
Saturn's Moon Titan has a thick atmosphere with a meteorological cycle. We report on the evolution of the giant cloud system covering its north pole using observations acquired by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. A radiative transfer model in spherical geometry shows that the clouds are found at an altitude between 30 and 65 km. We also show that the polar cloud system vanished progressively as Titan approached equinox in August 2009, revealing at optical wavelengths the underlying sea known as Kraken Mare. This decrease of activity suggests that the north-polar downwelling has begun to shut off. Such a scenario is compared with the Titan global circulation model of Rannou et al. (2006), which predicts a decrease of cloud coverage in northern latitudes at the same period of time.  相似文献   
512.
Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4° N and 341°W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120±10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mouélic et al., 2008) and Selk (Soderblom et al., 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently.  相似文献   
513.

Background

Satellite-based aboveground forest biomass maps commonly form the basis of forest biomass and carbon stock mapping and monitoring, but biomass maps likely vary in performance by region and as a function of spatial scale of aggregation. Assessing such variability is not possible with spatially-sparse vegetation plot networks. In the current study, our objective was to determine whether high-resolution lidar-based and moderate-resolution Landsat-base aboveground live forest biomass maps converged on similar predictions at stand- to landscape-levels (10 s to 100 s ha) and whether such differences depended on biophysical setting. Specifically, we examined deviations between lidar- and Landsat-based biomass mapping methods across scales and ecoregions using a measure of error (normalized root mean square deviation), a measure of the unsystematic deviations, or noise (Pearson correlation coefficient), and two measures related to systematic deviations, or biases (intercept and slope of a regression between the two sets of predictions).

Results

Compared to forest inventory data (0.81-ha aggregate-level), lidar and Landsat-based mean biomass predictions exhibited similar performance, though lidar predictions exhibited less normalized root mean square deviation than Landsat when compared with the reference plot data. Across aggregate-levels, the intercepts and slopes of regression equations describing the relationships between lidar- and Landsat-based biomass predictions stabilized (i.e., little additional change with increasing area of aggregates) at aggregate-levels between 10 and 100 ha, suggesting a consistent relationship between the two maps at landscape-scales. Differences between lidar- and Landsat-based biomass maps varied as a function of forest canopy heterogeneity and composition, with systematic deviations (regression intercepts) increasing with mean canopy cover and hardwood proportion within forests and correlations decreasing with hardwood proportion.

Conclusions

Deviations between lidar- and Landsat-based maps indicated that satellite-based approaches may represent general gradients in forest biomass. Ecoregion impacted deviations between lidar and Landsat biomass maps, highlighting the importance of biophysical setting in determining biomass map performance across aggregate scales. Therefore, regardless of the source of remote sensing (e.g., Landsat vs. lidar), factors affecting the measurement and prediction of forest biomass, such as species composition, need to be taken into account whether one is estimating biomass at the plot, stand, or landscape scale.
  相似文献   
514.
Casares  H. L.  Nicholson  K. N.  Malone  Sh. J. 《Geotectonics》2021,55(2):293-306
Geotectonics - The Seven Devils Mountains are located in the Wallowa-Whitman National Forest in western Idaho. These mountains expose a geologically complex and variably metamorphosed terrane which...  相似文献   
515.
Here, we present an approach to laser ablation ICP‐MS mapping of multi‐phase assemblages that permits the use of different internal standard elements, concentration values and reference materials for each mineral. In this way, we obtain not only broad pictures of elemental distributions within samples but can also extract high accuracy concentration data for any user‐selected region. This is accomplished by assigning regions of an image to corresponding mineral phases on a pixel‐by‐pixel basis. In this way, accurate trace element concentrations can be determined for each mineral phase, despite potential variations in their ablation characteristics. We present an example where elemental maps are constructed from ablation of a gabbroic sample that includes the phases apatite, amphibole and plagioclase. This work represents an important first step towards development of a method to produce highly accurate LA‐ICP‐MS elemental maps of multi‐phase samples.  相似文献   
516.
Saturn’s moon, Hyperion, is subject to strongly-varying solid body torques from its primary and lacks a stable spin state resonant with its orbital frequency. In fact, its rotation is chaotic, with a Lyapunov timescale on the order of 100 days. In 2005, Cassini made three close passes of Hyperion at intervals of 40 and 67 days, when the moon was imaged extensively and the spin state could be measured. Curiously, the spin axis was observed at the same location within the body, within errors, during all three fly-bys—~ 30° from the long axis of the moon and rotating between 4.2 and 4.5 times faster than the synchronous rate. Our dynamical modeling predicts that the rotation axis should be precessing within the body, with a period of ~ 16 days. If the spin axis retains its orientation during all three fly-bys, then this puts a strong constraint on the in-body precessional period, and thus the moments of inertia. However, the location of the principal axes in our model are derived from the shape model of Hyperion, assuming a uniform composition. This may not be a valid assumption, as Hyperion has significant void space, as shown by its density of 544± 50  kg m−3 (Thomas et al. in Nature 448:50, 2007). This paper will examine both a rotation model with principal axes fixed by the shape model, and one with offsets from the shape model. We favor the latter interpretation, which produces a best-fit with principal axes offset of ~ 30° from the shape model, placing the A axis at the spin axis in 2005, but returns a lower reduced χ 2 than the best-fit fixed-axes model.  相似文献   
517.
Rapid weathering and erosion rates in mountainous tropical watersheds lead to highly variable soil and saprolite thicknesses which in turn impact nutrient fluxes and biological populations. In the Luquillo Mountains of Puerto Rico, a 5-m thick saprolite contains high microorganism densities at the surface and at depth overlying bedrock. We test the hypotheses that the organisms at depth are limited by the availability of two nutrients, P and Fe. Many tropical soils are P-limited, rather than N-limited, and dissolution of apatite is the dominant source of P. We document patterns of apatite weathering and of bioavailable Fe derived from the weathering of primary minerals hornblende and biotite in cores augered to 7.5 m on a ridgetop as compared to spheroidally weathering bedrock sampled in a nearby roadcut.Iron isotopic compositions of 0.5 N HCl extracts of soil and saprolite range from about δ56Fe = 0 to ? 0.1‰ throughout the saprolite except at the surface and at 5 m depth where δ56Fe = ? 0.26 to ? 0.64‰. The enrichment of light isotopes in HCl-extractable Fe in the soil and at the saprolite–bedrock interface is consistent with active Fe cycling and consistent with the locations of high cell densities and Fe(II)-oxidizing bacteria, identified previously. To evaluate the potential P-limitation of Fe-cycling bacteria in the profile, solid-state concentrations of P were measured as a function of depth in the soil, saprolite, and weathering bedrock. Weathering apatite crystals were examined in thin sections and an apatite dissolution rate of 6.8 × 10? 14 mol m? 2 s? 1 was calculated. While surface communities depend on recycled nutrients and atmospheric inputs, deep communities survive primarily on nutrients released by the weathering bedrock and thus are tightly coupled to processes related to saprolite formation including mineral weathering. While low available P may limit microbial activity within the middle saprolite, fluxes of P from apatite weathering should be sufficient to support robust growth of microorganisms in the deep saprolite.  相似文献   
518.
519.
The coccolithophore Emiliania huxleyi was grown in seawater under different Ba concentrations. The relationship of coccolith Ba/Ca ratio and seawater Ba/Ca ratio was found to be linear. The linear regression yields the apparent Ba exchange coefficient of 0.10. Our data support a recently proposed generic model (Langer G., Gussone N., Nehrke G., Riebesell U., Eisenhauer A., Kuhnert H., Rost B., Trimborn S., and Thoms S. (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol. Oceanogr.51, 310-320.) developed for explaining apparent exchange coefficients of metabolically inert divalent trace metals, such as Sr, in E. huxleyi. This model represents the first approach combining cell physiological processes and data from inorganic precipitation experiments, which quantitatively explains coccolith apparent Sr and Ba exchange coefficients.  相似文献   
520.
Heavy Metal Concentrations in European Mosses: 2000/2001 Survey   总被引:3,自引:0,他引:3  
The heavy metals in mosses survey was originally established in 1980 as a joint Danish–Swedish initiative under the leadership of Åke Rühling, Sweden and has, since then, been repeated at five-yearly intervals with an increasing number of countries and individuals participating. Twenty-eight European countries, almost 7000 sites and about 100 individuals have been involved in the most recent survey in 2000/2001. The survey provides data on concentrations of 10 heavy metals (arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, vanadium, zinc) in naturally growing mosses throughout Europe. The technique of moss analysis provides a surrogate measure of the spatial patterns of heavy metal deposition from the atmosphere to terrestrial systems, and is easier and cheaper than conventional precipitation analysis. The aims of the survey are to determine patterns of variation in the heavy metal concentration of mosses across Europe, identify the main polluted areas, produce regional maps and further develop the understanding of long-range transboundary pollution.As in previous surveys, there was an east/west decrease in heavy metal concentrations in mosses, related in particular to industrial emissions. Former industrial sites and historic mines accounted for the location of some high concentrations in areas without contemporary industries. Long-range transboundary transport appears to account for elevated concentrations of heavy metals in areas without emission sources, such as lead in southern Scandinavia (presumably from emission sources elsewhere in Europe).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号