首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   43篇
  国内免费   7篇
测绘学   7篇
大气科学   43篇
地球物理   190篇
地质学   164篇
海洋学   28篇
天文学   140篇
综合类   2篇
自然地理   77篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   16篇
  2018年   17篇
  2017年   21篇
  2016年   22篇
  2015年   21篇
  2014年   26篇
  2013年   39篇
  2012年   29篇
  2011年   31篇
  2010年   22篇
  2009年   23篇
  2008年   26篇
  2007年   21篇
  2006年   25篇
  2005年   29篇
  2004年   23篇
  2003年   17篇
  2002年   20篇
  2001年   17篇
  2000年   11篇
  1999年   14篇
  1998年   15篇
  1997年   12篇
  1996年   6篇
  1995年   11篇
  1994年   9篇
  1993年   9篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1982年   3篇
  1981年   3篇
  1980年   8篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有651条查询结果,搜索用时 15 毫秒
91.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   
92.
This study presents the results from precipitation experiments carried out to investigate the partitioning of the alkaline earth cations Mg2+, Ca2+, Sr2+, and Ba2+ between abiogenic aragonite and seawater as a function of temperature. Experiments were carried out at 5 to 75 °C, using the protocol of Kinsman and Holland [Kinsman, D.J.J., Holland, H.D., 1969. The coprecipitation of cations with CaCO3 IV. The coprecipitation of Sr2+ with aragonite between 16 and 96 °C. Geochim. Cosmochim. Acta33, 1-17.] The concentrations of Mg Sr and Ba were determined in the fluid from each experiment by inductively coupled plasma-mass spectrometry, and in individual aragonite grains by secondary ion mass spectrometry. The experimentally produced aragonite grains are enriched in trace components (“impurities”) relative to the concentrations expected from crystal-fluid equilibrium, indicating that kinetic processes are controlling element distribution. Our data are not consistent with fractionations produced kinetically in a boundary layer adjacent to the growing crystal because Sr2+, a compatible element, is enriched rather than depleted in the aragonite. Element compatibilities, and the systematic change in partitioning with temperature, can be explained by the process of surface entrapment proposed by Watson and Liang [Watson, E.B., Liang, Y., 1995. A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am. Mineral.80, 1179-1187] and Watson [Watson, E.B., 1996. Surface enrichment and trace-element uptake during crystal growth. Geochim. Cosmochim. Acta60, 5013-5020; Watson, E.B., 2004. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim. Cosmochim. Acta68, 1473-1488]. This process is thought to operate in regimes where the competition between crystal growth rate and diffusivity in the near-surface region limits the extent to which the solid can achieve partitioning equilibrium with the fluid. A comparison of the skeletal composition of Diploria labyrinthiformis (brain coral) collected on Bermuda with results from precipitation calculations carried out using our experimentally determined partition coefficients indicate that the fluid from which coral skeleton precipitates has a Sr/Ca ratio comparable to that of seawater, but is depleted in Mg and Ba, and that there are seasonal fluctuations in the mass fraction of aragonite precipitated from the calcifying fluid (“precipitation efficiency”). The combined effects of surface entrapment during aragonite growth and seasonal fluctuations in “precipitation efficiency” likely forms the basis for the temperature information recorded in the aragonite skeletons of Scleractinian corals.  相似文献   
93.
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.  相似文献   
94.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   
95.
The solar particle event observed at STEREO Ahead on 18?August 2010 displayed a rich variety of behavior in the particle anisotropies. Sectored rates measured by the Low Energy Telescope (LET) on STEREO showed very large bidirectional anisotropies in 4??C?6?MeV protons for the first ???17?hours of the event while inside a magnetic cloud, with intensities along the field direction several hundred to nearly 1000 times greater than those perpendicular to the field. At the trailing end of the cloud, the protons became isotropic and their spectrum hardened slightly, while the He/H abundance ratio plunged by a factor of approximately four for about four hours. Associated with the arrival of a shock on 20?August was a series of brief (<?10?minute duration) intensity increases (commonly called ??shock spikes??) with relatively narrow angular distributions (???45° FWHM), followed by an abrupt decrease in particle intensities at the shock itself and a reversal of the proton flow to a direction toward the Sun and away from the receding shock. We discuss the STEREO/LET observations of this interesting event in the context of other observations reported in the literature.  相似文献   
96.
Palaeoflood hydraulic modelling is essential for quantifying ‘millennial flood’ events not covered in the instrumental record. Palaeoflood modelling research has largely focused on one-dimensional analysis for geomorphologically stable fluvial settings because two-dimensional analysis for dynamic alluvial settings is time consuming and requires a detailed representation of the past landscape. In this study, we make the step to spatially continuous palaeoflood modelling for a large and dynamic lowland area. We applied advanced hydraulic model simulations (1D–2D coupled set-up in HEC-RAS with 950 channel sections and 108 × 103 floodplain grid cells) to quantify the extent and magnitude of past floods in the Lower Rhine river valley and upper delta. As input, we used a high-resolution terrain reconstruction (palaeo-DEM) of the area in early mediaeval times, complemented with hydraulic roughness values. After conducting a series of model runs with increasing discharge magnitudes at the upstream boundary, we compared the simulated flood water levels with an inventory of exceeded and non-exceeded elevations extracted from various geological, archaeological and historical sources. This comparison demonstrated a Lower Rhine millennial flood magnitude of approximately 14,000 m3/s for the Late Holocene period before late mediaeval times. This value exceeds the largest measured discharges in the instrumental record, but not the design discharges currently accounted for in flood risk management.  相似文献   
97.
98.
99.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号