首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3998篇
  免费   171篇
  国内免费   24篇
测绘学   100篇
大气科学   352篇
地球物理   1011篇
地质学   1567篇
海洋学   293篇
天文学   573篇
综合类   11篇
自然地理   286篇
  2021年   47篇
  2020年   66篇
  2019年   72篇
  2018年   102篇
  2017年   127篇
  2016年   156篇
  2015年   102篇
  2014年   115篇
  2013年   230篇
  2012年   135篇
  2011年   175篇
  2010年   173篇
  2009年   170篇
  2008年   180篇
  2007年   146篇
  2006年   153篇
  2005年   130篇
  2004年   131篇
  2003年   101篇
  2002年   133篇
  2001年   64篇
  2000年   51篇
  1999年   66篇
  1998年   59篇
  1997年   43篇
  1996年   44篇
  1995年   40篇
  1994年   45篇
  1993年   36篇
  1991年   27篇
  1990年   33篇
  1989年   32篇
  1988年   21篇
  1987年   32篇
  1986年   24篇
  1985年   40篇
  1984年   41篇
  1983年   50篇
  1982年   38篇
  1981年   45篇
  1980年   47篇
  1979年   43篇
  1978年   36篇
  1977年   46篇
  1976年   30篇
  1975年   28篇
  1974年   25篇
  1973年   35篇
  1970年   21篇
  1948年   18篇
排序方式: 共有4193条查询结果,搜索用时 31 毫秒
951.
In order to study Zn and Cd accumulation and depuration, a set of oysters, Crassostrea rhizophorae, were transplanted to a metal contaminated coastal lagoon and another one was harvested there and transplanted to a non-polluted site. C. rhizophorae oysters and Perna perna mussels native from both sites were collected in order to monitor variability of metal concentration in resident populations. After three months exposure, oysters transplanted to the polluted site accumulated fourfold Zn (307-1319 microgg(-1)) without reaching the concentration level of resident oysters (9770 microgg(-1)). Cadmium concentrations had a slight but significant decrease during the same period (1.25-0.54 microgg(-1)). Oysters transplanted to the non-polluted site, showed threefold Zn depuration (6727-2404 microgg(-1)), while Cd had no significant variation (0.90-1.45 microgg(-1)). Results showed that transplanted oysters do not reach heavy metal concentrations in indigenous populations suggesting transplanted organisms would be better used to evaluate bioavailability instead of environmental concentrations.  相似文献   
952.
Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00 N and 30°40 N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.  相似文献   
953.
The Cenozoic margins of the Norwegian-Greenland Sea offer ideal conditions for passive margin studies. A series of structural elements, first observed on these margins, led to the concept of volcanic passive margins. Questions still remain about the development of such features and the location of the boundary between oceanic and continental crust. Despite the thin sediment cover of the margins, seismic reflection data are not able to image the deeper structures due to the occurrence of igneous rocks at shallow depth.This paper presents a 320-km long profile perpendicular to the strike of the main structural units of the Lofoten Margin in Northern Norway. A geological model is proposed, based on observations made with ocean bottom seismographs, which recorded seismic refraction data and wide angle reflections, along with a seismic reflection profile covering the same area. Ray-tracing was used to calculate a geophysical model from the shelf area into the Lofoten basin. The structures typical of a volcanic passive margin were found, showing that the Lofoten Margin was influenced by increased volcanic activity during its evolution. The ocean/continent transition is located in a 30-km wide zone landwards of the Vøring Plateau escarpment.The whole margin is underlain by a possibly underplated, high velocity layer. Evidence for a pre-rift sediment basin landwards of the escarpment, overlain by basalt flows, was seen. These structural features, related to extensive volcanism on the Lofoten Margin, are not as distinct as further south along the Norwegian Margin. Viewed in the light of the hot-spot theory of White and McKenzie (1989) the Lofoten Margin can be interpreted as a transitional type between volcanic and non-volcanic passive margin.  相似文献   
954.
The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events. The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape. The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.  相似文献   
955.
Abstract. The body organization and some biological data of Epimenia arabica , a new species of Sotenogastres of the order Cavibelonia , are presented. The species is described based on four large-sized specimens (13–21 cm × 0.7-1 cm) from three different localities off the coast of the Sinai Peninsula (Red Sea). It feeds on Scleronephthya corymbosa V erseveldt & C ohen ( Octocorallia: Alcyonacea ), generally at depths of 2–5 meters.  相似文献   
956.
957.
The Håkon Mosby Mud Volcano is a natural laboratory to study geological, geochemical, and ecological processes related to deep-water mud volcanism. High resolution bathymetry of the Håkon Mosby Mud Volcano was recorded during RV Polarstern expedition ARK XIX/3 utilizing the multibeam system Hydrosweep DS-2. Dense spacing of the survey lines and slow ship speed (5 knots) provided necessary point density to generate a regular 10 m grid. Generalization was applied to preserve and represent morphological structures appropriately. Contour lines were derived showing detailed topography at the centre of the Håkon Mosby Mud Volcano and generalized contours in the vicinity. We provide a brief introduction to the Håkon Mosby Mud Volcano area and describe in detail data recording and processing methods, as well as the morphology of the area. Accuracy assessment was made to evaluate the reliability of a 10 m resolution terrain model. Multibeam sidescan data were recorded along with depth measurements and show reflectivity variations from light grey values at the centre of the Håkon Mosby Mud Volcano to dark grey values (less reflective) at the surrounding moat.  相似文献   
958.
A long-term study within the pilot environmental specimen bank programme of the Federal Republic of Germany on arsenic levels in coastal and open seawater and their reflection in the brown seaweed (Fucus vesiculosus) has been performed. Dissolved arsenic was on average 0.76 (range 0.45–1.11) μgl−1 for 17 sampling stations in the Baltic Sea, whereas contents of dissolved arsenic are somewhat higher in shallow waters of the coastal zone of the North Sea. Total arsenic levels in algae ranged up to 40 mg kg−1 (dry weight) and showed for the four locations studied obvious seasonal variations for comparatively nonpolluted or nondisturbed locations only. However, probably due to biological influences, the results obtained so far indicate that composite samples integrating a one year period are supposed to be the best strategy for future environmental specimen banking. Using a new efficient speciation technique the percentage of chemically stable organoarsenic compounds in the investigated algae has been found to be 95% of the total arsenic content and thus somewhat lower than in teleost fish. For comparison, typical data for a few other algae species from the Baltic and the Mediterranean Sea are also shown.  相似文献   
959.
960.
The peraluminous Drammen batholith (650 km2) is the largest granite complex within the mainly alkaline province of the Permo-Carboniferous Oslo Rift, and peraluminous to metaluminous granites are also present in the southern part of the otherwise alkaline Finnemarka complex (125 km2). The emplacement of the Drammen granite, and probably most of the other biotite granite complexes, predate the alkaline syenites and granites. The eight separate petrographic types of the Drammen batholith range in SiO2 from 70 to 79 wt.% and have experienced variable amounts of fractionation of feldspars, biotite, zircon, apatite, titanite and Fe–Ti-oxides. The initial Sr, Nd and Pb isotopic ratios and a decoupling between the variations in the SiO2 content and the aluminum saturation index [ASI=Al2O3/(CaO+Na2O +K2O)] show that the various intrusive phases are not strictly comagmatic. The Nd values of the southern part of Finnemarka (+3.5 to +4) and the northern part of the Drammen granite (+1 to +1.5) are high and indicate insignificant (for Finnemarka) to minor Precambrian crustal or enriched mantle contributions. The very low Sr values of all of these samples (–1 to –12, outside the main Oslo Rift magmatic array), point to a time integrated Rb-depleted crustal contaminant or an EM1 mantle component. The earliest extruded alkali basalts along the southwestern margin of the Oslo Rift are the only other samples within this low Sr area, but their isotopic signature may also be linked to a mantle enrichment event (involving an EM1 component), e.g. associated with the Fen carbonatite magmatism 540 Ma ago. For a given 206Pb/204Pb, the 208Pb/204Pb ratios of the Drammen and Finnemarka batholiths are distinctly lower than those of the Skien alkaline volcanics and all other magmatic Oslo Rift rocks. This may indicate that the lithosphere of the central part of the rift had a time integrated Th-depletion. The samples from the southern part of the Drammen batholith, characterized by the presence of abundant miarolitic cavities, have Nd near 0 (–0.7 to +0.4) but strongly elevated Sr of +35 to +67. The combined Pb isotopic ratios of all the samples analyzed indicate that the Precambrian crustal anatectic contribution is in the form of time integrated Th-and U-depleted lower crust, and the high +Sr of the sourthern part of the Drammen granite results from shallow level wallrock assimilation or magma-fluid interactions. The remarkably low contribution of old crustal components to the Finnemarka and the northernmost Drammen batholiths may result from extensive late Precambrian intracustal differentiation in southwestern Scandinavia, leading to widespread upper crustal granites ( 900 Ma) and a correspondingly dense and refractory lower crust, in particular in a zone intersecting the central part of the rift. Liquidus phase relations and mass-balance constrainst permit derivation of the granites from mildly alkaline to tholeiitic melts by extensive crystal fractionation of clinopyroxene-and amphibole-rich assemblages. It is equally possible to form the granitic magmas by partial melting of Permian gabbros of similar composition. Either scenario is consistent with the isotopic constrainst and with the presence of dense cumulates and/or residues in the lower crust. The lack of igneous rocks of intermediate composition associated with the Drammen and Finnemarka batholiths point to an efficient upper crustal density filtering. Considerable amounts of heat would be accumulated in this region if differentiated, intermediate melts could not escape to shallower levels. Successive magma injections would therefore easily result in partial melting of already solidified mafic to intermediate melts and cumulates, and it is suggested that the peraluminous granites formed mainly by water-undersaturated anatexis of mafic material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号