首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   1282篇
  国内免费   17篇
测绘学   73篇
大气科学   83篇
地球物理   2063篇
地质学   1388篇
海洋学   206篇
天文学   533篇
自然地理   266篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   41篇
  2020年   65篇
  2019年   208篇
  2018年   207篇
  2017年   306篇
  2016年   351篇
  2015年   359篇
  2014年   385篇
  2013年   441篇
  2012年   303篇
  2011年   300篇
  2010年   287篇
  2009年   183篇
  2008年   229篇
  2007年   168篇
  2006年   121篇
  2005年   118篇
  2004年   105篇
  2003年   108篇
  2002年   104篇
  2001年   85篇
  2000年   88篇
  1999年   18篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有4612条查询结果,搜索用时 15 毫秒
871.
Rainfall network design using kriging and entropy   总被引:4,自引:0,他引:4  
The spatial distribution of rainfall is related to meteorological and topographical factors. An understanding of the weather and topography is required to select the locations of the rain gauge stations in the catchment to obtain the optimum information. In theory, a well‐designed rainfall network can accurately represent and provide the needed information of rainfall in the catchment. However, the available rainfall data are rarely adequate in the mountainous area of Taiwan. In order to provide enough rainfall data to assure the success of water projects, the rainfall network based on the existing rain gauge stations has to be redesigned. A method composed of kriging and entropy that can determine the optimum number and spatial distribution of rain gauge stations in catchments is proposed. Kriging as an interpolator, which performs linear averaging to reconstruct the rainfall over the catchment on the basis of the observed rainfall, is used to compute the spatial variations of rainfall. Thus, the rainfall data at the locations of the candidate rain gauge stations can be reconstructed. The information entropy reveals the rainfall information of the each rain gauge station in the catchment. By calculating the joint entropy and the transmitted information, the candidate rain gauge stations are prioritized. In addition, the saturation of rainfall information can be used to add or remove the rain gauge stations. Thus, the optimum spatial distribution and the minimum number of rain gauge stations in the network can be determined. The catchment of the Shimen Reservoir in Taiwan is used to illustrate the method. The result shows that only seven rain gauge stations are needed to provide the necessary information. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
872.
873.
This paper studies the links between scaling properties of river flow time series by comparing the results of three techniques applied to an extended data set of 34 French discharge gauging stations. The three approaches used are based on different mathematical tools and hypotheses: (1) shape analysis of flood hydrographs; (2) a multifractal framework through spectral and moment analyses, and (3) flood frequency analysis through the fitting of flood duration frequency curves (QdF). The general aim is to test the hypothesis of scaling invariance of river flow and the shape invariance of the hydrographs, in order to investigate the link between scaling properties and flow dynamics. In particular, the coherence between different approaches widely used in the literature to describe these characteristics is evaluated through the estimation of parameters defining the range of time‐scales on which the scaling properties are valid. The results show that most of these timescale parameters are linked to the flow dynamics and suggest that the approaches applied are interrelated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
874.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   
875.
The Sindong Group was deposited in the north–south trending half‐graben Nakdong Trough, southern Korean peninsula. The occurrence of detrital chromian spinels from the Jinju Formation of the Sindong Group in the Gyeongsang Basin means that the mafic to ultramafic rocks were exposed in its provenance. The chromian spinels from the Jinju Formation are characterized by extremely low TiO2 and Fe3+. Moreover, their range of Cr# is from 0.45 to 0.80 and makes a single trend with Mg#. The chemistry of chromian spinels implies that the source rocks for chromian spinels were peridotites or serpentinites, which originated in the mantle wedge. To more narrowly constrain their source rocks, the Ulsan and Andong serpentinites exposed in the Gyeongsang Basin were examined petrographically. Chromian spinels in the Andong serpentinite differ from those of the Jinju Formation and those in the Ulsan serpentinite partly resemble them. Furthermore, the Jinju chromian spinel suite is similar to the detrital chromian spinels from the Mesozoic sediments in the Circum‐Hida Tectonic zone, which includes the Nagato Tectonic zone in Southwest Japan and the Joetsu Belt in Northeast Japan. This suggests that the basement rocks, which were located along the main fault bounding the eastern edge of the Nakdong Trough, had exposures of peridotite or serpentinite. It is possible that the Nakdong Trough was directly adjacent to the Circum‐Hida Tectonic zone before the opening of the Sea of Japan (East Sea).  相似文献   
876.
A preliminary study was undertaken to determine the optimal conditions for the biodegradation of a crude oil. Among 57 oil‐degrading bacterial cultures isolated from oil‐contaminated soil samples, Bacillus sp. IOS1‐7, Corynebacterium sp. BPS2‐6, Pseudomonas sp. HPS2‐5, and Pseudomonas sp. BPS1‐8 were selected for the study based on the efficiency of crude oil utilization. Along with the selected individual strains, a mixed bacterial consortium prepared using the above strains was also used for degradation studies. The mixed bacterial consortium showed more growth and degradation than did individual strains. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 77% of the crude oil. This was followed by 69% by Pseudomonas sp. BPS1‐8, 64% by Bacillus sp. IOS1‐7, 45% by Pseudomonas sp. HPS2‐5, and 41% by Corynebacterium sp. BPS2‐6. The percentage of degradation by the mixed bacterial consortium decreased from 77 to 45% as the concentration of crude oil was increased from 1 to 12%. Temperature of 35°C and pH 7 were found to be optimum for maximum degradation.  相似文献   
877.
Preferential flow in soils deserves attention due to its potential role in accelerating the movement of contaminants to groundwater. This study investigates the movement of Cd, Cu, and Pb through preferential flow paths under different applied rainfall intensities. Artificial acid rain (pH of 4.1) containing CdCl2, CuCl2, and Pb(NO3)2 was applied to undisturbed soil and repacked sand columns at low and high intensities, and leachate metals and chloride concentrations were measured. Cd was found in the leachate at both low and high rates in all columns, while the increase in Cu concentrations in the leachate was detected only at the high rate of the undisturbed columns. Pb was retained in both columns. For undisturbed columns, the breakthrough curves of Cd and Cu were similar to those of Cl, showing early initial breakthrough by preferential flow and dependency on rainfall intensities. The Cd concentrations were detected in the leachate from repacked columns for high rate rainfall, implying that even homogeneous soil may not be perfectly able to retain metals and the initially wet condition is more harmful for subsurface contaminant transport. In conclusion, the study demonstrated that, despite its highly sorptive nature, the transport of some metals may be as fast as that of a tracer under preferential flow conditions, and the rainfall intensity is a significant factor for the degree of transport.  相似文献   
878.
The Upper Cretaceous Wahweap Formation accumulated in the active Cordilleran foreland basin of Utah. Soft‐sediment deformation structures are abundant in the capping sandstone member of the Wahweap Formation. By comparing with well‐established criteria, a seismogenic origin was determined for the majority of structures, which places these soft‐sediment deformation features in a class of sedimentary features referred to as seismites. A systematic study of the seismite trends included their vertical and horizontal distribution and a semi‐quantitative intensity analysis using a scale from 1 to 5 that is based on magnitude, sedimentary structure type, and the predominance of inferred process of hydroplastic deformation, liquefaction or fluidization. In addition, orientations of soft‐sediment fold axes were recorded. Construction of a northwest‐to‐southeast stratigraphic and seismite intensity cross‐section demonstrates: (1) reduction in stratigraphic thickness and percentage of conglomerates to the southeast, (2) the presence of lower seismite, middle nonseismite, and upper seismite zones within the capping sandstone (permitting subdivision of the capping sandstone member), and (3) elimination of the nonseismite zone and amalgamation of the lower and upper seismite zones to the southeast. Regional isoseismal contour maps generated from the semi‐quantitative analysis indicate a decrease in overall intensity from northwest to southeast in the upper and lower seismic zones and in sandstone within 5 m stratigraphically of the contact between the upper and capping sandstone members. In addition, cumulative seismite fold orientations support a west–northwest direction towards regional epicentres. Isoseismal maps are used to distinguish the effects of intrabasinal normal faulting from those of regional orogenic thrusting. Thus, this study demonstrates the utility of mapping seismites to separate the importance of regional vs. local tectonic activity influencing foreland basin sedimentation by identifying patterns that delineate palaeoepicentres associated with specific local intrabasinal normal faults vs. regional trends in soft‐sediment deformation related to Sevier belt earthquakes.  相似文献   
879.
Most conventional wastewater treatment plants remove very small amounts of micropollutants, such as pharmaceuticals. Here, the ability of two different types of submerged nanofiltration flat sheet modules to remove pharmaceuticals from wastewater is analyzed. The two nanofiltration membranes were used at relatively low pressures of only 0.3 and 0.7 bar. At such low pressures, the membranes did not retain salts to a great extent. This is advantageous in wastewater treatment because no salt concentrate is produced. Carbamazepine was retained only slightly by the nanofiltration membranes, whereas approximately 60% of diclofenac and naproxen were retained by both membranes. This level of effectiveness might not be enough to justify the use of such a system as an additional treatment step in wastewater treatment plants.  相似文献   
880.
Carbonates capping Neoproterozoic glacial deposits contain peculiar sedimentological features and geochemical anomalies ascribed to extraordinary environmental conditions in the snowball Earth aftermath. It is commonly assumed that post-snowball climate dominated by CO2 partial pressures several hundred times greater than modern levels, would be characterized by extreme temperatures, a vigorous hydrological cycle, and associated high continental weathering rates. However, the climate in the aftermath of a global glaciation has never been rigorously modelled. Here, we use a hierarchy of numerical models, from an atmospheric general circulation model to a mechanistic model describing continental weathering processes, to explore characteristics of the Earth system during the supergreenhouse climate following a snowball glaciation. These models suggest that the hydrological cycle intensifies only moderately in response to the elevated greenhouse. Indeed, constraints imposed by the surface energy budget sharply limit global mean evaporation once the temperature has warmed sufficiently that the evaporation approaches the total absorbed solar radiation. Even at 400 times the present day pressure of atmospheric CO2, continental runoff is only 1.2 times the modern runoff. Under these conditions and accounting for the grinding of the continental surface by the ice sheet during the snowball event, the simulated maximum discharge of dissolved elements from continental weathering into the ocean is approximately 10 times greater than the modern flux. Consequently, it takes millions of years for the silicate weathering cycle to reduce post-snowball CO2 levels to background Neoproterozoic levels. Regarding the origin of the cap dolostones, we show that continental weathering alone does not supply enough cations during the snowball melting phase to account for their observed volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号