首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   18篇
  国内免费   4篇
测绘学   9篇
大气科学   31篇
地球物理   117篇
地质学   96篇
海洋学   14篇
天文学   33篇
综合类   1篇
自然地理   32篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   11篇
  2011年   16篇
  2010年   18篇
  2009年   17篇
  2008年   15篇
  2007年   16篇
  2006年   18篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有333条查询结果,搜索用时 252 毫秒
221.
All global circulation models (GCMs) suffer from some form of bias, which when used as boundary conditions for regional climate models may impact the simulations, perhaps severely. Here we present a bias correction method that corrects the mean error in the GCM, but retains the six-hourly weather, longer-period climate-variability and climate change from the GCM. We utilize six different bias correction experiments; each correcting different bias components. The impact of the full bias correction and the individual components are examined in relation to tropical cyclones, precipitation and temperature. We show that correcting of all boundary data provides the greatest improvement.  相似文献   
222.
A bank and floodplain sediment budget was created for three Piedmont streams tributary to the Chesapeake Bay. The watersheds of each stream varied in land use from urban (Difficult Run) to urbanizing (Little Conestoga Creek) to agricultural (Linganore Creek). The purpose of the study was to determine the relation between geomorphic parameters and sediment dynamics and to develop a floodplain trapping metric for comparing streams with variable characteristics. Net site sediment budgets were best explained by gradient at Difficult Run, floodplain width at Little Conestoga Creek, and the relation of channel cross‐sectional area to floodplain width at Linganore Creek. A correlation for all streams indicated that net site sediment budget was best explained by relative floodplain width (ratio of channel width to floodplain width). A new geomorphic metric, the floodplain trapping factor, was used to compare sediment budgets between streams with differing suspended sediment yields. Site sediment budgets were normalized by floodplain area and divided by the stream's sediment yield to provide a unitless measure of floodplain sediment trapping. A floodplain trapping factor represents the amount of upland sediment that a particular floodplain site can trap (e.g. a factor of 5 would indicate that a particular floodplain site traps the equivalent of 5 times that area in upland erosional source area). Using this factor we determined that Linganore Creek had the highest gross and net (floodplain deposition minus bank erosion) floodplain trapping factor (107 and 46, respectively) that Difficult Run the lowest gross floodplain trapping factor (29) and Little Conestoga Creek had the lowest net floodplain trapping factor (–14, indicating that study sites were net contributors to the suspended sediment load). The trapping factor is a robust metric for comparing three streams of varied watershed and geomorphic character, it promises to be a useful tool for future stream assessments. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
223.
Landscape evolution models (LEMs) simulate the geomorphic development of river basins over long time periods and large space scales (100s–1000s of years, 100s of km2). Due to these scales they have been developed with simple steady flow models that enable long time steps (e.g. years) to be modelled, but not shorter term hydrodynamic effects (e.g. the passage of a flood wave). Nonsteady flow models that incorporate these hydrodynamic effects typically require far shorter time steps (seconds or less) and use more expensive numerical solutions hindering their inclusion in LEMs. The recently developed LISFLOOD‐FP simplified 2D flow model addresses this issue by solving a reduced form of the shallow water equations using a very simple numerical scheme, thus generating a significant increase in computational efficiency over previous hydrodynamic methods. This leads to potential convergence of computational cost between LEMs and hydrodynamic models, and presents an opportunity to combine such schemes. This paper outlines how two such models (the LEM CAESAR and the hydrodynamic model LISFLOOD‐FP) were merged to create the new CAESAR‐Lisflood model, and through a series of preliminary tests shows that using a hydrodynamic model to route flow in an LEM affords many advantages. The new model is fast, computationally efficient and has a stronger physical basis than a previous version of the CAESAR model. For the first time it allows hydrodynamic effects (tidal flows, lake filling, alluvial fans blocking valley floor) to be represented in an LEM, as well as producing noticeably different results to steady flow models. This suggests that the simplification of using steady flow in existing LEMs may bias their findings significantly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
224.
Parallax measurements on matching aerial photograph stereopairs from 1958 and 1983 were used to calculate the ice lost from Dinwoody Glacier in the Wind River Range of Wyoming. The ice remaining in Dinwoody Glacier was measured using a portable radio echo-sounder. Isopach maps of lost ice thickness and remaining ice thickness in the glacier were constructed from these point measurements. Calculations of lost and remaining ice volumes, converted to water-equivalent values, were derived from planimetric measurements from these isopach maps. The water equivalent remaining in Dinwoody Glacier is approximately equal to that lost between 1958 and 1983. Should this rate of downwasting and retreat continue, Dinwoody Glacier will disappear in 27 years, with significant adverse impacts on late summer and early fall water supplies for downstream irrigators and instream flow needs. [Key words: glaciers, glacier runoff, radio echo-sounding, Wind River Range, Wyoming.]  相似文献   
225.
On retrieving patterns in environmental sensor data   总被引:1,自引:0,他引:1  
As many sensor networks are currently being deployed for environmental monitoring, there is a growing need to develop systems and applications for managing, processing and retrieving massive amounts of data generated from those networks. In this research, a query answering system with pattern mining techniques is investigated specifically for marine sensor data. We consider three applications of pattern mining: similar pattern search, predictive query and query by clustering. In pattern mining for query answering, we adopt the dynamic time warping (DTW) method for similarity measurement. We also propose the use of a query relaxation approach that recommends users change parameters of a given query to get an answer. Finally, we show implementation results of pattern query answering in a marine sensor network deployed in the South East of Tasmania, Australia. Pattern query answering system benefits in accessing and discovering knowledge from sensor data for decision making purposes.  相似文献   
226.
Natural resource management (NRM) organizations are increasingly looking to resilience thinking to provide insights into how social and environmental systems interact and to identify points of intervention. Drawing on complex systems analysis, resilience thinking emphasizes that landscapes constantly change from social and ecological interactions, and focuses NRM planners’ attention on identifying key variables, feedbacks, and thresholds that can help improve intervention strategies. More deliberative approaches are being developed to use resilience thinking in ways that engage and build human capacity for action. This article documents experiences shared with NRM agencies in rural Australia as we developed new approaches to link resilience thinking with collective learning principles. We present an emerging framework through which heuristics associated with resilience thinking is being used as part of a planning-by-doing process. The framework is being tested to assess whether and how it can enable change agents to advance their capacities for adaptation and transformation.  相似文献   
227.
228.
An experimental landscape simulator has been developed which uses a rainfall simulator to create overland flow and erosion. The simulator uses rainfall sprinklers that eliminate rainsplash and an artificial soil which has little cohesion. Experimental landscapes developed in the simulator evolved according to Howard's headward growth model. Elements of Glock's model could be identified during evolution (i.e. initiation and maximum extension), but other stages of this model were not observed (i.e. extension and integration). The Horton concept of cross‐grading and micropiracy and stream piracy was not observed despite the dominance of overland flow, nor the groundwater headward growth mechanism proposed by Dunne, the latter due to experimental design, which eliminated any perched groundwater table. The experimental apparatus produced model landscapes that are scaled‐down analogues of real world processes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
229.
We have experimentally investigated the phase and melting relations of garnet + clinopyroxene + carbonate assemblages at 2.5–5.5 GPa, to assess the feasibility of carbonated eclogite as a source for some crustally emplaced carbonatites. The solidus of our composition was at 1,125 °C at 2.5 GPa, 1,225 °C at 3.5 GPa and 1,310 °C at 5.0 GPa. Melts were sodic calcio-dolomitic carbonatites, and were markedly more calcic than the dolomitic melts produced by partial melting of carbonated peridotite. Na contents of the experimental carbonatites decreased with increasing pressure when compared at similar degrees of melting, and SiO2 contents increased with degree of melting. Experiments on a second composition with enhanced Na2O demonstrated its strong effect in lowering melting temperatures in carbonate eclogite. Natural carbonated eclogite bodies in the peridotitic upper mantle will have a range of solidus temperatures. In many cases, carbonate will be molten in the upper 250 km. Carbonate melt would segregate from its source eclogite at very low melt fractions and infiltrate surrounding peridotitic wall rock. This would result in metasomatic enrichment of the peridotitic wall rock, but its exact nature will depend on the relative P–T positions of the eclogite + CO2 and peridotite + CO2 solidii. As a result of these inevitable metasomatic interactions, it is considered unlikely that carbonatite melts derived from carbonated eclogite in the upper mantle could be emplaced into the crust unmodified. However, they may have a role in metasomatically enriching and carbonating parts of the upper mantle, producing sources suitable for subsequent production of silica undersaturated silicate liquids and carbonatites ultimately emplaced in the crust.Editorial responsibility: J. Hoefs  相似文献   
230.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号