首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   18篇
  国内免费   4篇
测绘学   10篇
大气科学   32篇
地球物理   120篇
地质学   97篇
海洋学   14篇
天文学   33篇
综合类   1篇
自然地理   35篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   11篇
  2011年   16篇
  2010年   18篇
  2009年   17篇
  2008年   16篇
  2007年   16篇
  2006年   18篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   11篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有342条查询结果,搜索用时 218 毫秒
261.
262.
263.
The Global Imager (GLI) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) made global observations from 2 April 2003 to 24 October 2003. In cooperation with several institutes and scientists, we obtained quality controlled match-ups between GLI products and in-situ data, 116 for chlorophyll-a concentration (CHLA), 249 for normalized water-leaving radiance (nLw) at 443 nm, and 201 for aerosol optical thickness at 865 nm (Tau_865) and Angstrom exponent between 520 and 865 nm (Angstrom). We evaluated the GLI ocean color products and investigated the causes of errors using the match-ups. The median absolute percentage differences (MedPD) between GLI and in-situ data were 14.1–35.7% for nLws at 380–565 nm, 52.5–74.8% nLws at 625–680 nm, 47.6% for Tau_865, 46.2% for Angstrom, and 46.6% for CHLA, values that are comparable to the ocean-color products of other sensors. We found that some errors in GLI products are correlated with observational conditions; nLw values were underestimated when nLw at 680 nm was high, CHLA was underestimated in absorptive aerosol conditions, and Tau_865 was overestimated in sunglint regions. The error correlations indicate that we need to improve the retrievals of the optical properties of absorptive aerosols and seawater and sea surface reflection for further applications, including coastal monitoring and the combined use of products from multiple sensors.  相似文献   
264.
Thermal conductivity is an important parameter to consider when designing clay-based barriers for use in deep geological repositories (DGR). In the DGR environment, the infiltration of local saline groundwater can potentially change the pore fluid chemistry of a barrier over its lifetime. This change in chemistry is known to alter the thermal properties of the barrier materials. In order to examine the impact of pore fluid salinity on thermal conductivity, experiments were conducted under both distilled water and saline pore fluid conditions. The material mixtures were prepared at two different dry densities using two different salt types. Furthermore, five different thermal conductivity prediction models were selected and evaluated on their performance with respect to the experimental outcomes. In general, these results indicated that an increase in the constituent pore fluid’s salt concentration leads to a decrease in the thermal conductivity of the material. Additionally, the thermal conductivity values of the materials prepared at a high dry density were greater than of those compacted at a low dry density.  相似文献   
265.
Semi-structured geographical problems are often addressed by groups of decision-makers. Each group member is likely to have a specific set of objectives that they wish to address and a unique perspective on the way in which the problem should be solved. The solution to such problems often requires consensus building and compromise among decision-makers as they attempt to optimize their own criteria. The set of criteria adopted by a particular decision-maker constrains the set of solutions he/she will deem acceptable. Compromise among multiple decision-makers can occur at the intersection of these constrained solution sets. Knowledge about the criteria space, the solution space, and the relation between the two is often incomplete for semi-structured problems. New tools are needed to explore, analyze, and visualize the solution space of a problem with respect to multiple analytical models and criteria. In this research we explore the utility of genetic algorithms as an effective means to: (1) search the solution space of geographical problems; (2) visualize the spatial ramifications of alternative criteria spaces; and (3) identify compromise solutions.  相似文献   
266.
Tracing Ground Water Recharge in an Agricultural Watershed with Isotopes   总被引:6,自引:0,他引:6  
  相似文献   
267.
Steady convective exchange flows down slopes   总被引:2,自引:0,他引:2  
: Horizontal exchange flows driven by destabilising buoyancy fluxes through the surface waters of lakes and coastal regions of oceans are important in understanding the transport of nutrients, micro-organisms and pollutants from littoral to pelagic zones. Our interest here is in the discharge flow driven by cooling or destabilising forcing at the water surface in a water body with variable depth due to sloping bottom topography. Flow visualisation studies and measurements in a laboratory model enabled us to develop scaling arguments to predict the dependency of discharge upon surface forcing and the angle of bottom slope. The results were used to interpret both the laboratory measurements and field data from a small shallow lake with sloping sides and an essentially flat bottomed interior, as well as published results from the literature. The steady state horizontal exchange can be described by Q = 0.24 B1/3 (l tan //(1 + tan /))4/3, where Q is the discharge rate per unit length of shoreline, / is the angle of the bottom slope, B is the surface buoyancy flux and l is the horizontal length of the forcing region over the slope. The flushing timescale of the wedge shaped littoral region was given by Ff ~ l 2/3 (1 + tan /) 4/3/ (B tan / 1/3. While the buoyancy flux in the field is almost never constant in space or time and the slope from the shore is seldom uniform, we found that the exchange rate was relatively insensitive to buoyancy flux changes and only moderately sensitive to slope.  相似文献   
268.
Global sensitivity analysis techniques are better suited for analyzing input-output relationships over the full range of parameter variations and model outcomes, as opposed to local sensitivity analysis carried out around a reference point. This article describes three such techniques: (1) stepwise rank regression analysis for building input-output models to identify key contributors to output variance, (2) mutual information (entropy) analysis for determining the strength of nonmonotonic patterns of input-output association, and (3) classification tree analysis for determining what variables or combinations are responsible for driving model output into extreme categories. These techniques are best applied in conjunction with Monte Carlo simulation-based probabilistic analyses. Two examples are presented to demonstrate the applicability of these methods. The usefulness of global sensitivity techniques is examined vis-a-vis local sensitivity analysis methods, and recommendations are provided for their applications in ground water modeling practice.  相似文献   
269.
Increases in nitrate loading to the Mississippi River watershed during the last 50 years are considered responsible for the increase in hypoxic zone size in Louisiana-Texas shelf bottom waters. There is currently a national mandate to decrease the size of the hypoxic zone to 5000 km2 by 2015, mostly by a 30% reduction in annual nitrogen discharge into the Gulf of Mexico. We developed an ecosystem model for the Mississippi River plume to investigate the response of organic matter production and sedimentation to variable nitrate loading. The nitrogen-based model consisted of nine compartments (nitrate, ammonium, labile dissolved organic nitrogen, bacteria, small phytoplankton, diatoms, micro- and mesozooplankton, and detritus), and was developed for the spring season, when sedimentation of organic matter from plume surface waters is considered important in the development of shelf hypoxia. The model was forced by physical parameters specified along the river-ocean salinity gradient, including residence time, light attenuation by dissolved and particulate matter, mixed layer depth, and dilution. The model was developed using measurements of biological biomasses and nutrient concentrations across the salinity gradient, and model validation was performed with an independent dataset of primary production measurements for different riverine NO3 loads. Based on simulations over the range of observed springtime NO3 loads, small phytoplankton contributed on average 80% to primary production for intermediate to high salinities (>15), and the main contributors to modeled sedimentation at these salinities were diatom sinking, microzooplankton egestion, and small phytoplankton mortality. We investigated the impact of limiting factors on the relationship between NO3 loading and ecosystem rates. Model results showed that primary production was primarily limited by physical dilution of NO3, followed by abiotic light attenuation, light attenuation due to mixing, and diatom sinking. Sedimentation was mainly limited by the first three of these factors. Neither zooplankton grazing or plume residence times acted as limiting factors of ecosystem rates. Regarding nutrient reductions to the watershed, simulations showed that about half of the percent decrease in NO3 load was reflected in decreased plume sedimentation. For example, a 30% decrease in NO3 load resulted in a 19% decrease in average plume primary production and a 14% decrease in sedimentation. Finally, our model results indicated that the fraction of primary production exported from surface waters is highly variable with salinity (7–87%), a finding which has important implications for predictive models of hypoxic zone size that assume a constant value for this ratio.  相似文献   
270.
The ‘International Intercomparison Exercise of fCO2 Systems’ was carried out in 1996 during the R/V Meteor Cruise 36/1 from Bermuda/UK to Gran Canaria/Spain. Nine groups from six countries (Australia, Denmark, France, Germany, Japan, USA) participated in this exercise, bringing together 15 participants with seven underway fugacity of carbon dioxide (fCO2) systems, one discrete fCO2 system, and two underway pH systems, as well as systems for discrete measurement of total alkalinity and total dissolved inorganic carbon. Here, we compare surface seawater fCO2 measured synchronously by all participating instruments. A common infrastructure (seawater and calibration gas supply), different quality checks (performance of calibration procedures for CO2, temperature measurements) and a common procedure for calculation of final fCO2 were provided to reduce the largest possible amount of controllable sources of error. The results show that under such conditions underway measurements of the fCO2 in surface seawater and overlying air can be made to a high degree of agreement (±1 μatm) with a variety of possible equilibrator and system designs. Also, discrete fCO2 measurements can be made in good agreement (±3 μatm) with underway fCO2 data sets. However, even well-designed systems, which are operated without any obvious sign of malfunction, can show significant differences of the order of 10 μatm. Based on our results, no “best choice” for the type of the equilibrator nor specifics on its dimensions and flow rates of seawater and air can be made in regard to the achievable accuracy of the fCO2 system. Measurements of equilibrator temperature do not seem to be made with the required accuracy resulting in significant errors in fCO2 results. Calculation of fCO2 from high-quality total dissolved inorganic carbon (CT) and total alkalinity (AT) measurements does not yield results comparable in accuracy and precision to fCO2 measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号