首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   22篇
  国内免费   4篇
测绘学   10篇
大气科学   38篇
地球物理   132篇
地质学   130篇
海洋学   22篇
天文学   45篇
综合类   1篇
自然地理   43篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   16篇
  2017年   13篇
  2016年   15篇
  2015年   12篇
  2014年   15篇
  2013年   23篇
  2012年   12篇
  2011年   19篇
  2010年   20篇
  2009年   23篇
  2008年   18篇
  2007年   19篇
  2006年   20篇
  2005年   23篇
  2004年   15篇
  2003年   14篇
  2002年   14篇
  2001年   14篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有421条查询结果,搜索用时 465 毫秒
161.
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al. 2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.  相似文献   
162.
Kerlingarfjöll central volcano is Iceland’s second largest outcrop of Quaternary rhyolite and is part of the Icelandic Western Rift Zone. Geochemical and Ar/Ar age data show that at least 21 different rhyolite eruptions have taken place at Kerlingarfjöll over the last 350 ka. Ar/Ar dating was carried out on samples of obsidian which showed variable reproducibility, illustrating the difficulty in dating young Icelandic volcanics. Nevertheless, reasonable estimates of eruption age have been derived for a number of eruptive units that are consistent with observed stratigraphy, enabling an understanding of the temporal evolution of Kerlingarfjöll. Two rhyolite magma types are present. The first is an older, low-Nb rhyolite that was erupted episodically along a cryptic curved fracture system, to form a discontinuous ring of rhyolite mountains, between 350 and 250 ka. This discontinuous ring is similar to structures observed at other volcanoes in Iceland, suggesting that the development of a curved fracture that acts as a pathway for episodic silicic eruptions is a feature of central volcano development. The second magma is a younger, high-Nb rhyolite that was erupted episodically between 250 and 68 ka in the northern part of Kerlingarfjöll, forming two clusters, both of which have areas of intense hydrothermal activity. Repose periods for rhyolite volcanism are thought to be on the order of tens of thousands of years, and it is possible that Kerlingarfjöll will erupt rhyolite again in the future.  相似文献   
163.
Large rock slope failures from near‐vertical cliffs are an important geomorphic process driving the evolution of mountainous landscapes, particularly glacially steepened cliffs. The morphology and age of a 2·19 × 106 m3 rock avalanche deposit beneath El Capitan in Yosemite Valley indicates a massive prehistoric failure of a large expanse of the southeast face. Geologic mapping of the deposit and the cliff face constrains the rock avalanche source to an area near the summit of ~8·5 × 104 m2. The rock mass free fell ~650 m, reaching a maximum velocity of 100 m s?1, impacted the talus slope and spread across the valley floor, extending 670 m from the base of the cliff. Cosmogenic beryllium‐10 exposure ages from boulders in the deposit yield a mean age of 3·6 ± 0·2 ka. The ~13 kyr time lag between deglaciation and failure suggests that the rock avalanche did not occur as a direct result of glacial debuttressing. The ~3·6 ka age for the rock avalanche does coincide with estimated late Holocene rupture of the Owens Valley fault and/or White Mountain fault between 3·3 and 3·8 ka. The coincidence of ages, combined with the fact that the most recent (AD 1872) Owens Valley fault rupture triggered numerous large rock falls in Yosemite Valley, suggest that a large magnitude earthquake (≥M7.0) centered in the south‐eastern Sierra Nevada may have triggered the rock avalanche. If correct, the extreme hazard posed by rock avalanches in Yosemite Valley remains present and depends on local earthquake recurrence intervals. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   
164.
第一章 执行概况 板块边界观测计划(PBO)是地球透镜计划(EarthScope)的一部分,将在5年内建立875个连续的全球定位系统(CGPS)、174个钻孔应变仪(BSM)和5个激光应变仪(LSM),以研究贯穿美国西部的活动板块边界的变形。另外,将用有100台接收机的PBO组合装置接收测量的GPS数据(SGPS),并且从第2”年开始,把目前美国西部地球物理观测网络中的225个CGPS站吸收到PBO网络中。  相似文献   
165.
In volcanic risk assessment it is necessary to determine the appropriate level of sophistication for a given predictive model within the contexts of multiple sources of uncertainty and coupling between models. A component of volcanic risk assessment for the proposed radioactive waste repository at Yucca Mountain (Nevada, USA) involves prediction of dispersal of contaminated tephra during violent Strombolian eruptions and the subsequent transport of that tephra toward a hypothetical individual via surface processes. We test the suitability of a simplified model for volcanic plume transport and fallout tephra deposition (ASHPLUME) coupled to a surface sediment-transport model (FAR) that calculates the redistribution of tephra, and in light of inherent uncertainties in the system. The study focuses on two simplifying assumptions in the ASHPLUME model: 1) constant eruptive column height and 2) constant wind speed and direction during an eruption. Variations in tephra dispersal resulting from unsteady column height and wind conditions produced variations up to a factor of two in the concentration of tephra in sediment transported to the control population. However, the effects of watershed geometry and terrain, which control local remobilization of tephra, overprint sensitivities to eruption parameters. Because the combination of models used here shows limited sensitivity to the actual details of ash fall, a simple fall model suffices to estimate tephra mass delivered to the hypothetical individual.  相似文献   
166.
Shallow plumbing systems for small-volume basaltic volcanoes   总被引:3,自引:3,他引:0  
Eruptive dynamics in basaltic volcanoes are controlled, in part, by the conduit geometry. However, uncertainties in conduit shape and dike-to-conduit transition geometry have limited our predictive capability for hazards assessments. We characterize the subvolcanic geometry of small-volume basaltic volcanoes (magmatic volatile-driven eruptions, 0.1 to 0.5 km3) based on a synthesis of field studies of five basaltic volcanoes exposed to varying degrees by erosion and exhibiting feeder dikes, conduits, and vent areas ≤250 m depth. Study areas include East Grants Ridge (New Mexico, USA), Basalt Ridge, East Basalt Ridge, Paiute Ridge, and Southeast Crater Flat (Nevada, USA). Basaltic feeder dikes 250 to 100 m deep have typical widths of 4–12 m, with smooth host-rock contacts (rhyolite tuff). At depths less than 100 m, heterogeneities in the host rock form preferential pathways for small dike splays and sills, resulting in a 30-m effective width at 50 m depth. The development of a complex conduit at depths less than 70 m is reflected in bifurcating dikes and brecciation and incorporation of the country rock. The overall zone of effect at depths less than 50 m is ≤110 m wide (220 m elongated along the feeder dike). Based on comparisons with theoretical conduit flow models, the width of the feeder dike at depths from 250 to 500 m is expected to range from 1 to 10 m and is expected to decrease to about 1–2 m at depths greater than 500 m. The flaring shape of the observed feeder systems is similar to results of theoretical modeling using lithostatic pressure-balanced flow conditions. Sizes of observed conduits differ from modeled dimensions by up to a factor of 10 in the shallow subsurface (<50 m depth), but at depths greater than 100 m the difference is a factor of 2 to 4. This difference is primarily due to the fact that observed eroded conduits record the superimposed effects of multiple eruptive events, while theoretical model results define dimensions necessary for a single, steady eruption phase. The complex details of magma-host rock interactions observed at the study areas (contact welding, brecciation, bifurcating dikes and sills, and stoping) represent the mechanisms by which the lithostatic pressure-balanced geometry is attained. The similarity in the normalized shapes of theoretical and observed conduits demonstrates the appropriateness of the pressure-balanced modeling approach, consistent with the conclusions of Wilson and Head (J Geophys Res 86:2971–3001, 1981) for this type of volcano.  相似文献   
167.
Detailed studies have been made of the behaviour of gases and radicals involved in the production of oxidants at the Weybourne Atmospheric Observatory in both summertime and wintertime conditions. In June 1995 the range of meteorological conditions experienced varied such that ozone destruction was observed in clean northerly air flows reaching Weybourne down the North Sea from the Arctic, and ozone production was observed in varying degrees in air with different loadings of nitrogen oxides and other precursors. The transition point for ozone destruction to ozone production occurred at a nitric oxide concentration of the order of 50 pptv. Plumes of polluted air from various urban areas in the U.K. were experienced in the June campaign at Weybourne. Quantitative studies of ozone production in a plume from the Birmingham conurbation on 18 June 1995 showed that the measurement of ozone production agreed well with calculated production rates from the product of the nitric oxide and peroxy radical concentrations (r2=0.9). In wintertime conditions (October–November 1994) evidence was also found for oxidant production, defined as the sum of O3+NO2. At this time of year the peroxy radical concentrations (RO2) were much lower than observed in the summertime and the nitric oxide (NO) was much higher. There was still sufficient RO2 during the day, however, for a slow accumulation of oxidant. Confirmatory evidence for this comes from the diurnal co-variance of (O3+NO2) with PAN, an excellent tracer of tropospheric photochemistry. The same type of covariance occurs in summer between PAN and ozone. The results obtained in these series of measurements are pertinent to understanding the measures necessary to control production of regional photochemical air pollution, and to the production of ozone throughout the northern hemisphere in winter.  相似文献   
168.
The design and operation of mathematical models of solute mixing and sediment transport in estuaries rely heavily on the provision of good-quality field data. We present some observations of salinity, suspended sediment concentration and velocity at one of the tidal limits of a semi-enclosed tidal lagoon in Southern England (Pagham Harbour, West Sussex, UK) where the natural processes of tidal incursion and solute mixing have been heavily modified as a result of the construction of sea walls dating back to the 18th Century. These observations, made immediately downstream of two parallel tidal flap gates by conductivity-temperature-depth (CTD) profiler, and also using bed-mounted sensor frames to measure velocity at 2 fixed depths, have yielded a set of results covering 11 tidal cycles over the period 2002–04. It is clear from the results obtained that over a typical tidal cycle, the greatest vertical salinity gradients occur in the 1–2 h immediately after the onset of the flood tide, and that subsequently, energetic mixing acts to rapidly break down this stratification. Under moderate-to-high fresh water flows (>0.5 m3/s), the break-down in vertical salinity gradient is more gradual, while under low fresh water flows (<0.2 m3/s), the vertical salinity gradient is generally less pronounced. Estimates of Richardson number during the early flood-tide period reveal values that vary rapidly between <1 and about 20, with lower values occurring after around 1.5–2 h after low water. Observations of suspended sediment concentration vary widely even for similar tidal and fresh water flow conditions, revealing the possible influence of wind speed, the storage effects of the water in the lagoon downstream of the observation site, and the complexity of the hydrodynamics downstream of tidal flap gates. The data also show that most of the sediment transport is landward, and occurs during flood tides, with estimated total tidal landward flood tide flux of fine sediment of the order of 50–120 kg under low fresh water flow conditions. These observations, which reinforce the results presented in Warner et al. (2004) and elsewhere, can help to provide information about the appropriate techniques for managing sediments and pollutants, including nutrients from sewage effluent waters, in estuaries where hydraulic flap gates are used to control the entry of fresh water over the tidal cycle.  相似文献   
169.
A weather-type catalogue based on the Jenkinson and Collison method was developed for an area in south-west Russia for the period 1961–2010. Gridded sea level pressure data was obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The resulting catalogue was analysed for frequency of individual types and groups of weather types to characterise long-term atmospheric circulation in this region. Overall, the most frequent type is anticyclonic (A) (23.3 %) followed by cyclonic (C) (11.9 %); however, there are some key seasonal patterns with westerly circulation being significantly more common in winter than summer. The utility of this synoptic classification is evaluated by modelling daily rainfall amounts. A low level of error is found using a simple model based on the prevailing weather type. Finally, characteristics of the circulation classification are compared to those for the original JC British Isles catalogue and a much more equal distribution of flow types is seen in the former classification.  相似文献   
170.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号