首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   19篇
  国内免费   3篇
测绘学   11篇
大气科学   27篇
地球物理   103篇
地质学   111篇
海洋学   27篇
天文学   113篇
综合类   1篇
自然地理   30篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   19篇
  2011年   13篇
  2010年   15篇
  2009年   35篇
  2008年   16篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   12篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1971年   2篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
321.
Summary The phenomenon of the green flash at sunset (or sunrise) is reviewed. Several possible mechanisms that have been put forth to explain the green flash are discussed. A quantitative model for the phenomenon is then described, which includes parameters that are representative for a polar atmosphere (low humidity and small aerosol optical depth). It is supposed that the primary mechanism responsible for causing the green flash are natural molecular disperion, and, the filtering action imposed by the atmosphere for low elevation angles. Results from the model indicate that a green rim of vertical extent 0.15 milliradians would appear at the upper limb of the sun during sunset or sunrise. The theoretical results are compared with observations of a green flash made at wintertime in interior Alaska.  相似文献   
322.
Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201–1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not required to explain the presence of high-Ni olivines in Hawaiian lavas and, therefore, indicate that the proportion of eclogite in the Hawaiian plume is less than has been estimated in recent studies.  相似文献   
323.
Magallanes–Austral Basin (MAB) fill is preserved along a >1000 km north–south trending outcrop belt in the southern Patagonia region of Argentina and Chile. Although the stratigraphic evolution of the MAB has been well documented in the Chilean sector (referred to as the Magallanes Basin), its northern terminus in southern Argentina (Austral Basin) is poorly constrained. We present new stratigraphic and geochronologic analyses of the early basin fill (Aptian–Turonian) from the Argentine sector (49–51°S) of the MAB to document spatial variability in stratigraphy and timing of deposition during the initial stages of basin evolution. The initiation of the retroarc foreland basin fill is marked by the transition from mudstone to coarse‐clastic deposition, which is characterised by the consistent presence of sandstone beds > ca. 20 cm thick interpreted to represent sediment gravity flows deposited in a submarine fan system. Depositional environments within the early fill of the basin range from lower to upper deep‐water fan settings as well as previously undocumented slope deposits. These facies are present as far north as El Chalten, Argentina (ca. 49°S), indicating that facies‐equivalent rocks can be traced along‐strike for at least 5 degrees of latitude, based on correlation with strata as far south as the Cordillera Darwin (ca. 54°S). Eight new U‐Pb zircon ages from ash beds reveal an overall southward younging trend in the initiation of coarse clastic deposition. Inferred depositional ages range from ca. 115 ± 1.9 Ma in the northernmost study area to not older than 92 ± 1 Ma and 89 ± 1.5 Ma in the central and southern sectors respectively. The apparent diachronous delivery of coarse detritus into the basin may reflect (1) gradual southward progradation of a deep‐water fan system from a northerly point source and/or (2) orogen‐parallel variations in the timing and magnitude of thrust‐belt deformation and erosion that provided more local sources for sediment delivery.  相似文献   
324.
Absorption lines of MgH and CaH N  = 1 − 0 transitions were searched for in foreground molecular clouds towards the continuum sources associated with Sgr B2 (M) and W49A (N). None of these lines was detected with our sensitivity level of ∼20 mK. Millimetric absorption lines of MgO, MgOH, CaO and CaOH were also searched for towards Sgr B2 (M) without success. The fractional abundances relative to molecular hydrogen are ≲ 1.0 × 10−11 for MgH, ≲ 7.9 × 10−13 for MgO, ≲ 1.6 × 10−10 for MgOH, ≲ 1.6 × 10−9 for CaH, ≲ 2.0 × 10−12 for CaO, and ≲ 2.5 × 10−10 for CaOH, respectively. The low abundances measured in absorption indicate that a significant fraction of interstellar magnesium and calcium cannot be tied up in their monohydrides, monoxides and monohydroxides. The low abundance of MgH also implies that grain-surface chemistry involving magnesium is not efficient and that magnesium is depleted on to grains to a factor of ≳ 102.5 in well-shielded molecular clouds.  相似文献   
325.
 The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Received, October 1996 Revised, August 1997 Accepted, September 1997  相似文献   
326.
327.
A box model of Puget Sound   总被引:1,自引:0,他引:1  
A classical two-layer box model has been used to calculate volume transports and vertical exchange coefficients for the Main Basin of Puget Sound. High river flow (January–February) and low flow (August–September) calculations, using salinity and runoff observations, show that basically two estuarine types exist within the basin under both flow conditions. Admiralty Inlet, the north entrance to the Main Basin, is similar to a partially mixed estuary with vigorous tidal mixing, so that horizontal and vertical salinity gradients are similar in winter and late summer. Within the deep main basin, two layer transports are proportional to salinity stratification and the vertical exchanges are low. Calculated summer transports are about a factor of two smaller than winter transports for the Main Basin. Model transports agree quite well with daily net transports estimated from current meters. Flushing times calculated by the model also agree with volume replacement times calculated using current meter data and by methods using oxygen deficits in the lower layer.  相似文献   
328.
Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the variability of environmental conditions and physical forcing affecting phytoplankton in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 to September 2002. The basic data set used in this study are phytoplankton pigment concentrations derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentrations obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variation of ice cover was observed to be the dominant environmental factor as the ice-edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient-rich Anadyr Water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during the onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea-ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being −0.45. 1998 was also the warmest in the 5 years globally and the sea-ice cover was least extensive in the Beaufort/Chukchi Sea region, partly because of the 1997–1998 El Niño. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at −0.79 in April, during the onset of the bloom period.  相似文献   
329.
New petrographic and major element geochemical data from modern Peru margin upper slope-outer shelf phosphorites are presented, which provide insight into their origin and paragenetic relationship with other authigenic minerals (glauconite, pyrite and dolomite) occurring in organic-rich sediments. Glauconites are precipitated relatively early following the partial reduction of ferric iron and, following this process, phosphate, pyrite, and then dolomite precipitation take place at progressively deeper levels in the sediment in association with microbial reduction of sulfate. As in many ancient economic phosphorite deposits, the phosphatic facies here consist of nodules, crusts, coatings and strata composed of phosphatic pelletal grains (ooids, structureless grains, intraclasts, clumps and biogenic grains) in association with organic-rich biosiliceous sediments. All are considered to have formed within a few centimeters or within a few tens of centimeters below the sediment-water interface. Important factors that influence which morphology will tend to develop include the amount of available pore space, the presence of suitable nucleation sites, the amount and size of siliciclastic detritus incorporated as inclusions and the relative solution chemistries of the precipitating solutions. Bacterial mediation may play an important, but as yet unspecified role in the precipitation process. Textural data and factor analysis of chemical data suggest that structureless pellets are relatively inclusion-free Na-F-Mg-CO3-substituted pore-water precipitates whereas ooids are inclusion-rich pore-water precipitates poor in lattice-substituted components. Variations in nodular cement birefringence and crystallinity are suggested to have been produced by similar lattice substitutions that directly reflect pore-water carbonate ion concentrations and thus relative degrees of organic-matter degradation. Phosphate and dolomite are intimately mixed, yet mineralogically distinct phases in phosphatized dolomicrites.

Depth-stratified threshold carbonate ion concentrations may control the lower limit at which phosphatic minerals may precipitate. Below depths of a few centimeters, excessive carbonate ion concentrations and diminished reactive iron and sulfate concentrations favor the development of dolomite while precluding further development of phosphatic minerals and pyrite. Periodic sediment reorganization (bioturbation, current winnowing and erosion, mass wasting, etc.) plays an important role in both concentrating pelletal grains and maintaining nodules and crusts at critical depth levels in the sediment, as well as mixing ordered mineral parageneses into complicated sequences.  相似文献   

330.
We report observations at 0.56 and 2.2 μm of the Apollo asteroid 1976 AA made during its discovery apparition. We derive a 2.2-μm relative spectral reflectance (scaled to unity at 0.56 μm) of R(2.2 μm) = 1.5 ± 0.3. This 2.2-μm reflectance is not compatible with a carbonaceous surface composition. However, it is compatible with a wide variety of meteoritic types including ordinary chondrites, stony irons, and mesosiderites. Thus, 1976 AA may have a silicate surface similar to other Apollo-Amor objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号