首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   26篇
  国内免费   4篇
测绘学   31篇
大气科学   55篇
地球物理   181篇
地质学   322篇
海洋学   52篇
天文学   164篇
自然地理   33篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   14篇
  2017年   15篇
  2016年   23篇
  2015年   17篇
  2014年   25篇
  2013年   30篇
  2012年   15篇
  2011年   34篇
  2010年   42篇
  2009年   39篇
  2008年   29篇
  2007年   31篇
  2006年   29篇
  2005年   33篇
  2004年   24篇
  2003年   26篇
  2002年   29篇
  2001年   23篇
  2000年   10篇
  1999年   17篇
  1998年   7篇
  1997年   8篇
  1995年   10篇
  1994年   12篇
  1993年   12篇
  1991年   18篇
  1990年   10篇
  1989年   10篇
  1987年   9篇
  1986年   6篇
  1985年   11篇
  1983年   8篇
  1981年   10篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1972年   6篇
  1966年   7篇
  1964年   6篇
  1962年   5篇
  1960年   6篇
  1952年   5篇
  1948年   5篇
排序方式: 共有838条查询结果,搜索用时 31 毫秒
91.
A new 2 \(\frac{1}{2}\) -octahedral sheet silicate, NaMg2.5 Si4O10 (OH)2, has been synthesized from oxide mixtures in the temperature range 500–600°C at pressures between 1 and 5 kb. The lattice parameters are a 0 = 5.298 Å, b 0 = 9.047 Å, c 0 = 9.479 Å and ß=99.55°. X-ray data are given in the text. At temperatures above 605° C/1 kb and 630° C/5 kb, it decomposes to magnesiorichterite plus quartz.  相似文献   
92.
In this paper we report about a small region on the northern scarp of Olympus Mons showing an increase of the 3 μm hydration band in the OMEGA spectra, together with low superficial temperatures. Although water ice clouds can occurs on the flank of big martian volcanoes, radiative transfer modeling indicates that atmospheric water ice alone cannot justify the shape of the observed band. A fit of the 1.9–3 μm absorption features is obtained by hypothesizing that the study region consists of a mixture of dust and water ice covered by an optically thin (τ=0.08 at 3 μm) layer of dust. Thermal modeling also suggests that water ice in this region may be stable during most of the martian year due to the saturation of the atmosphere. If water ice is responsible for the observed spectral behavior, it might consist of a number of ice or snow patches possibly deposited in small depressions.  相似文献   
93.
94.
Vestimentiferan tube worms are prominent members of modern methane seep communities and are totally reliant as adults on symbiotic sulphide-oxidizing bacteria for their nutrition. The sulphide is produced in the sediment by a biochemical reaction called the anaerobic oxidation of methane (AOM). A well-studied species from the Gulf of Mexico shows that seep vestimentiferans ‘mine’ sulphide from the sediment using root-like, thin walled, permeable posterior tube extensions, which can also be used to pump sulphate and possibly hydrogen ions from the soft tissue back into the sediment to increase the local rate of AOM. The ‘root-balls’ of exhumed seep vestimentiferans are intimately associated with carbonate nodules, which are a result of AOM. We have studied vestimentiferan specimens and associated carbonates from seeps at the Kouilou pockmark field on the Congo deep-sea fan and find that some of the posterior ‘root’ tubes of living specimens are enclosed with carbonate indurated sediment and other, empty examples are partially or completely replaced by the carbonate mineral aragonite. This replacement occurs from the outside of the tube wall inwards and leaves fine-scale relict textures of the original organic tube wall. The process of mineralization is unknown, but is likely a result of post-mortem microbial decay of the tube wall proteins by microorganisms or the precipitation from locally high flux of AOM derived carbonate ions. The aragonite-replaced tubes from the Kouilou pockmarks show similar features to carbonate tubes in ancient seep deposits and make it more likely that many of these fossil tubes are those of vestimentiferans. These observations have implications for the supposed origination of this group, based on molecular divergence estimates.  相似文献   
95.
96.
In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here ‘DIN’ is the sum of ammonium, nitrite and nitrate.) After  30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher proportion of the decomposed particulate N was converted into inorganic N. It can be concluded that during the first days and weeks of early diagenesis the magnitude and composition of the flux of decompositional dissolved N-compounds from sediments into the overlying water was influenced by non-linear interactions of OM substrates of different degradability. Given these experimental results it is likely that the relative spatial distributions of OM of differing degradability in sediments control the magnitude and composition of the return flux of dissolved N-bearing compounds from sediments into the overlying water column.  相似文献   
97.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   
98.
We introduce a technique for U–Pb dating of baddeleyite using secondary ion mass spectrometry (SIMS) in situ analysis of ng-mass crystals that cannot be efficiently extracted by conventional mineral separation techniques. Average 207Pb/206Pb ages for Precambrian baddeleyite crystals are within < 0.3% of the respective isotope dilution thermal ionization mass spectrometry (ID-TIMS) ages. 206Pb/238U ratios are corrected for instrumental fractionation calibrated through linear regression in a Pb/U relative sensitivity vs. UO2+/U+ calibration plot. Calibration is performed on separated baddeleyite crystals (~ 100–200 μm in maximum dimension) mounted in random crystallographic orientation. 206Pb/238U ages for baddeleyite from Duluth gabbro (FC4b) and Kovdor are accurate within 1–2% when averaging 15–30 individual spot analyses and relative sensitivities calibrated on Phalaborwa baddeleyite. The relative difference of 206Pb/238U between large crystals and micro-baddeleyite from FC4b is within ~ 1%. Comparison between silicate glass and baddeleyite, as well as replicate analysis of the same grains in different orientations relative to the incidence direction of the primary beam support previous evidence for bias in Pb/U sensitivity in baddeleyite due to variable crystal orientations. We successfully utilized oxygen flooding and a UO2+/U+-based calibration to significantly reduce orientation dependent bias.  相似文献   
99.
An in situ U–Pb SIMS (IN-SIMS) method to date micro-baddeleyite crystals as small as 3 μm is presented with results from three samples that span a variety of ages and geologic settings. The method complements ID-TIMS geochronology by extending the range of dateable crystals to sizes smaller than can be recovered by physical separation. X-ray mapping and BSE imaging are used to locate target grains in thin section, followed by SIMS analysis on a CAMECA ims 1270, using the field aperture in the transfer column to screen out ions from host phases. Internal age precisions for the method are anticipated to range from 0.1% for Precambrian rocks to 3–7% for Phanerozoic rocks. Results establish a 2689 ± 5 Ma age for mafic dikes in the Wyoming craton, USA, a 1540 ± 30 Ma age for a subaerial lava flow from the Thelon Basin of northern Canada, and a 457 ± 34 Ma age for mafic dikes in the platform sequence of southeastern Siberia. The method is ideal for relatively non-destructive dating of small samples such as extraterrestrial rocks and precious terrestrial samples.  相似文献   
100.
Marine Quaternary trench and slope sediments were sampled along the margin of the Southern Andes, Chile between 36° and 40°S. Major and trace element contents indicate only minor influence of weathering and transport fractionation. The whole rock composition of the sediments is similar to the average rock of the Cretaceous to Holocene magmatic arc of this section of the southern volcanic zone. Sr, Nd, and Pb isotope composition of the sediments also resembles closely the average composition of the magmatic arc. The contribution of compositionally distinct Palaeozoic crust, which makes up most of the volume of the forearc, is ~0–20% crustal Sr, Nd, and Pb according to the isotope record of the trench and slope sediments. Input of sediments from the continent into the subduction system was dominated by detritus from the magmatic arc at least for the last 20 My on the basis of the Oligocene to Holocene exhumation history of the margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号