首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   26篇
  国内免费   4篇
测绘学   31篇
大气科学   55篇
地球物理   181篇
地质学   322篇
海洋学   52篇
天文学   164篇
自然地理   33篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   14篇
  2017年   15篇
  2016年   23篇
  2015年   17篇
  2014年   25篇
  2013年   30篇
  2012年   15篇
  2011年   34篇
  2010年   42篇
  2009年   39篇
  2008年   29篇
  2007年   31篇
  2006年   29篇
  2005年   33篇
  2004年   24篇
  2003年   26篇
  2002年   29篇
  2001年   23篇
  2000年   10篇
  1999年   17篇
  1998年   7篇
  1997年   8篇
  1995年   10篇
  1994年   12篇
  1993年   12篇
  1991年   18篇
  1990年   10篇
  1989年   10篇
  1987年   9篇
  1986年   6篇
  1985年   11篇
  1983年   8篇
  1981年   10篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1972年   6篇
  1966年   7篇
  1964年   6篇
  1962年   5篇
  1960年   6篇
  1952年   5篇
  1948年   5篇
排序方式: 共有838条查询结果,搜索用时 15 毫秒
31.
32.
In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.  相似文献   
33.
Compositional zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) deposit in western Germany (12.9 ka) are reported. These rocks represent the cooler outer portion and crystal-rich products of a cooling magma reservoir at upper crustal levels. Major and trace-element difference between cores and rims in sanidine crystals represent two generations of crystal growth separated by unmixing of a carbonate melt. Trace-element differences measured by LA–ICP–MS are in accordance with silicate–carbonate unmixing. Across the core–rim boundary, we extracted gray-scale profiles from multiple accumulations of back-scattered electron images. Gray scales directly represent K/Na ratios owing to low concentrations of Ba and Sr (<?30 ppm). Diffusion gradients are modeled to solve for temperature using known pre-eruptive U–Th zircon ages (0–20 ky) of each sample (Schmitt et al., J Petrol 51:1053–1085, 2010). Estimated temperatures range from 630 °C to 670 °C. For the exsolution boundaries, a diffusive homogenization model is constrained by the solvus temperature of ~ 712_725 °C and gives short time scales of only 15–50 days. Based on our results, we present a model for the temperature–time history of these rocks. The model also constrains the thermal variation across the cooling crystal-rich carapace of the magma reservoir over 20 ka and suggests a thermal reactivation of cumulates, the cooling carapace, and probably the entire system only a few years prior to the explosive eruption of the remaining molten core of the phonolitic magma reservoir.  相似文献   
34.
The sensitivity of the suspended sediment flux is tested with respect to rapid changes in bed-level across the surf zone of a sandy beach. The suspended flux was computed using a fixed instrument array, but bed-level changes due to ripple migration caused the instrument elevations to be significantly changed during the course of the experiment. The nominal elevations of the instruments were adjusted during data processing (using the MOBS array) to maintain a fixed elevation with respect to bed-level changes. The resultant suspended sediment concentrations and fluxes were significantly different from the unadjusted data, and for the present data set O(35%) less when averaged over the tide. The maximum difference between adjusted and unadjusted fluxes may be O(260%). The results indicate that changes in bed-level, particularly those due to bedform migration, must be accounted for when processing OBS data if reliable estimates of suspended sediment transport are to be obtained in the field.  相似文献   
35.
The stable carbon isotope composition of particulate organic carbon (POC) from plankton, sediment trap material and surface sediments from the Atlantic sector of the Southern Ocean were determined. Despite low and constant water temperatures, large variations in the δ13C values of plankton were measured. 13C enrichments of up to 10‰ coincided with a change in the diatom assemblage and a two-fold increase in primary production. Increased CO2 consumption as a result of rapid carbon fixation may result in diffusion limitation reducing the magnitude of the isotope fractionation. The δ13C values of plankton from sea-ice cores display a relationship with the chlorophyll a content. High ‘ice-algae’ biomass, in combination with a limited exchange with the surrounding seawater, results in values of about − 18 to − 20‰. It is assumed that these values are related to a reduced CO2 availability in the sea-ice system. In comparison with plankton, sinking krill faeces sampled by traps can be enriched by 2–5‰ in 13C (e.g. central Bransfield Strait). In contrast, the transport of particles in other faeces, diatom aggregates or chains results in minor isotope changes (e.g. Drake Passage, Powell Basin, NW Weddell Sea). A comparison between the δ13C values of sinking matter and those of surface sediments reveals that 13C enrichments of up to 3–4‰ may occur at the sediment-water boundary layer. These isotopic changes are attributed to high benthic respiration rates.  相似文献   
36.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
37.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   
38.
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine‐rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O‐poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral‐chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer‐sized, and super‐dense chondrule‐forming regions with extremely high solid‐to‐gas mass ratios of 1000 or more.  相似文献   
39.
Uranium accumulation in organic-rich sediments can be closely modelled by assuming that the dominant effect of the uranium-organic matter interaction is the direct or indirect reduction of uranyl compounds to form U(IV) minerals, especially uraninite-pitchblende. Application of this model to the Needle's Eye (Scotland) site where uranium is actively accumulating in Quaternary sediments demonstrates that uranium accumulation is both effective and rapid in environments involving shallow, organic-rich, reducing horizons. The period of uranium deposit formation at Needle's Eye is estimated to be as short as 5000 years. The transport of uranium to the site of deposition by oxidizing groundwaters and the channelling of these oxidizing uraniferous groundwaters are identified as important factors involved in the rapid accumulation of uranium. The regional hydrogeological model indicates that a fault in the area appears to act as a hydraulic screen for the uraniferous groundwaters. On one side of the fault the Quaternary sediments are well drained whilst on the other the flow of groundwater seeps out creating a major flux just at the bottom of the organic-rich layers. The local hydrogeological model shows that the groundwater flow is vertical in this area. A third significant factor in the development of these uranium accumulations is the presence of a significant nearby source of leachable primary uranium. In the case of the Needle's Eye site this is in the form of some thirty 185 ±20 Ma, pitchblende-bearing veins.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号