首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   37篇
  国内免费   2篇
测绘学   9篇
大气科学   41篇
地球物理   182篇
地质学   239篇
海洋学   78篇
天文学   236篇
综合类   7篇
自然地理   90篇
  2021年   13篇
  2020年   13篇
  2019年   8篇
  2018年   20篇
  2017年   19篇
  2016年   31篇
  2015年   25篇
  2014年   16篇
  2013年   43篇
  2012年   33篇
  2011年   31篇
  2010年   41篇
  2009年   37篇
  2008年   27篇
  2007年   38篇
  2006年   30篇
  2005年   32篇
  2004年   46篇
  2003年   26篇
  2002年   29篇
  2001年   22篇
  2000年   21篇
  1999年   10篇
  1998年   17篇
  1997年   13篇
  1996年   8篇
  1995年   14篇
  1994年   10篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1985年   12篇
  1984年   11篇
  1983年   8篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1971年   4篇
  1968年   5篇
排序方式: 共有882条查询结果,搜索用时 15 毫秒
701.
Impact craters are formed by the displacement and ejection of target material. Ejection angles and speeds during the excavation process depend on specific target properties. In order to quantify the influence of the constitutive properties of the target and impact velocity on ejection trajectories, we present the results of a systematic numerical parameter study. We have carried out a suite of numerical simulations of impact scenarios with different coefficients of friction (0.0–1.0), porosities (0–42%), and cohesions (0–150 MPa). Furthermore, simulations with varying pairs of impact velocity (1–20 km s−1) and projectile mass yielding craters of approximately equal volume are examined. We record ejection speed, ejection angle, and the mass of ejected material to determine parameters in scaling relationships, and to calculate the thickness of deposited ejecta by assuming analytical parabolic trajectories under Earth gravity. For the resulting deposits, we parameterize the thickness as a function of radial distance by a power law. We find that strength—that is, the coefficient of friction and target cohesion—has the strongest effect on the distribution of ejecta. In contrast, ejecta thickness as a function of distance is very similar for different target porosities and for varying impact velocities larger than ~6 km s−1. We compare the derived ejecta deposits with observations from natural craters and experiments.  相似文献   
702.
We report on deep imaging of a remote M31 globular cluster, MGC1, obtained with Gemini/GMOS. Our colour–magnitude diagram for this object extends ∼5 mag below the tip of the red-giant branch and exhibits features consistent with an ancient metal-poor stellar population, including a long, well-populated horizontal branch. The red-giant branch locus suggests MGC1 has a metal abundance  [M/H]≈−2.3  . We measure the distance to MGC1 and find that it lies ∼160 kpc in front of M31 with a distance modulus  μ= 23.95 ± 0.06  . Combined with its large projected separation of   R p= 117 kpc  from M31, this implies a deprojected radius of   R gc= 200 ± 20 kpc  , rendering it the most isolated known globular cluster in the Local Group by some considerable margin. We construct a radial brightness profile for MGC1 and show that it is both centrally compact and rather luminous, with   MV =−9.2  . Remarkably, the cluster profile shows no evidence for a tidal limit and we are able to trace it to a radius of at least 450 pc, and possibly as far as ∼900 pc. The profile exhibits a power-law fall-off with exponent  γ=−2.5  , breaking to  γ=−3.5  in its outermost parts. This core-halo structure is broadly consistent with expectations derived from numerical models, and suggests that MGC1 has spent many gigayears in isolation.  相似文献   
703.
The Stokes components of He i D3 emission in two quiescent prominences, using full spectral profile measurements, are analyzed to derive vector magnetic fields. Two independently developed schemes, based on the Hanle effect, are used for interpretation. They involve solutions of the statistical equilibrium equations for the He i D3 multiplet, including the effect of coherency and full level crossing, which predict the magnetic field dependence of the observed polarization. Derived magnetic field vector solutions for each pair of linear polarization Stokes profiles corresponding to an observational point in the prominence are, intrinsically, not uniquely determined, and a set of possible solutions is usually obtained. However, mutual consistency of these solutions with those independently predicted by the form of the circular polarized component, allow, in almost all cases, rejection of all solutions of a set except one symmetrical pair. Of such a pair, a unique solution can be determined with a high confidence level by reference to independent potential field information. Field vectors are found usually to be close to horizontal and normal to the prominence surface, but extreme exceptions are found. Field values range from 6 G to 60 G. The derived vectorfield configurations and their magnitudes are briefly discussed relative to these prominences and to different quiescent prominence models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   
704.
In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest(BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0(T0, control), 15%(T1, low intensity), 35%(T2, moderate intensity), and 100%(T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between T0 and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height(DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in T0, while the density of seedlings and saplings were significantly higher in T2 than in T0. Structural characteristics in T3 were entirely different from T0. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard′s similarity coefficient(CJ); the Morisita-Horn index(CMH); and the Bray-Curtis index(CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains.  相似文献   
705.
Abstract— Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s‐process) in low‐mass (1.5–3 M) asymptotic giant branch stars of solar metallicity when viewed on single‐element three‐isotope plots, grains with compositions deviating from model predictions were identified on multi‐element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi‐element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three‐isotope plots of each element measured, corresponding to a smaller range of 13C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on 13C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of 13C, the primary neutron source for s‐process nucleosynthesis in low‐mass stars.  相似文献   
706.
We present a deep H -band image of the region in the vicinity of the cluster Abell 1942 containing the puzzling dark matter concentration detected in an optical weak lensing study by Erben et al. We demonstrate that our limiting magnitude, H =22 , would be sufficient to detect clusters of appropriate mass out to redshifts comparable with the mean redshift of the background sources. Despite this, our infrared image reveals no obvious overdensity of sources at the location of the lensing mass peak, nor an excess of sources in the I − H versus H colour–magnitude diagram. We use this to constrain further the luminosity and mass-to-light ratio of the putative dark clump as a function of its redshift. We find that for spatially flat cosmologies, background lensing clusters with reasonable mass-to-light ratios lying in the redshift range 0< z <1 are strongly excluded, leaving open the possibility that the mass concentration is a new type of truly dark object.  相似文献   
707.
708.
A typical concentric ellipse multiple-arch system was observed in the solar corona during the February 4, 1962 eclipse in New Guinea. The following results have been obtained from analysis of a white-light photograph taken by N. Owaki (see Owaki and Saito, 1967a).
  1. The arches are composed of four equidistant components, elliptical in shape, and almost concentric with a prominence at the common center of the ellipses.
  2. The prominence and arch system appears to be the lower region of a helmet-shaped streamer.
  3. The widths of the arches are observed to increase with height.
  4. Analysis was made in the light of three models for the coronal structures that could lead to the observed arches: (a) rod-like concentrations of electrons; (b) tunnel-shaped elliptical shells of electrons; and (c) dome-like ellipsoidal shells of electrons. Electron densities are derived for the models, and the dome-like model is excluded as a possibility for arch systems exhibiting a coronal cavity.
  5. The scale height in the arch-streamer region is found to be almost the same as that of the K-corona, suggesting equal temperatures, density distributions, etc. in each region.
  6. There is a dark space (a coronal cavity) between the innermost arch and the prominence. The brightness of this cavity is 1/5 that of the adjacent arch. It is 3% brighter than the background corona of the arch-streamer system.
  7. A comparison is made between the deficiency of electrons in the coronal cavity and the excess of electrons in the prominence. It is found that the ratio of the excess to the deficiency lies between 0.9 and 40.
  8. A comparison between the electron efflux from the ‘leaky magnetic bottle’ possibly formed by rod-shaped coronal arches and the electron influx into those arches from the chromosphere leads us to the conclusion that the rod model is probably valid and that spicules appear to be an adequate supply for the electrons observed in the arches. The tunnel model may be valid, but in that case spicules are probably not the sources of the electrons observed in coronal arches.
  相似文献   
709.
We have examined a wide range of physical, chemical, and thermal models of the atmosphere of Uranus. In that model, which we believe maximizes favorable conditions for the support of life [Weidenschilling and Lewis, Icarus20, 465–476 (1973)], we find the probability of growth of a contaminant terrestrial microorganisms to be nil. If, as is likely, conditions are even more extreme on Neptune, the probability of contamination of both of the outer planets Uranus and Neptune is nil. The Wiedenschilling and Lewis model guarantees the presence of water droplets through the temperature range 0 to 100°C; other published models add water liquid at higher temperatures or fail to provide liquid water at all within this temperature range. In this model the heavy elements (C, N, O, etc.) are enhanced in Uranus by a factor sufficient to form a deep massive cloud layer of aqueous ammonia solution droplets. We can estimate the probability of growth with respect to the following factors: the presence of stable liquid water, convection of parcels of atmosphere to lethally hot depths, solar energy sources reaching the water layer, organic molecular production by solar ultraviolet light, ammonia concentration at the water cloud level, ionic species distribution, and concentrations at the water cloud level. The evaluation of these factors suggests that most terrestrial life as we know it would be excluded on the basis of any one of them. We know of no organism that would be adapted to all the stringent Uranus conditions simultaneously. The discovery of even a single species of Earth organism that can survive or grow under allowable outer planetary conditions would establish new principles in biology.Titan, the methane-rich moon of Saturn, may be more hospitable for terrestrial organisms than any of the other objects of the outer solar system. Even there we see formidable barriers to the growth of an Earth organism in Titan's atmosphere. We recognize that revision of our views concerning Titan must occur as more is learned about this satellite.We advocate the abandonment, in principle, of the probabilistic approach to the estimation of growth of terrestrial organisms on spacecraft, planets, and satellites in the solar system. We do not support an approach which estimates probabilities of qualitatively unknown phenomena. We recommend a strategy which involves identification and intensive study of those organisms most likely to thrive under known conditions for each of the planets respectively. (Unknown environmental conditions may be allowed to vary optimally.) Some explicit areas for Earth-based experimentation are indicated.  相似文献   
710.
We discuss the voltammetric methods that are used to assess metal-organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal-ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal-ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal-ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号