首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   43篇
  国内免费   2篇
测绘学   9篇
大气科学   41篇
地球物理   182篇
地质学   239篇
海洋学   78篇
天文学   236篇
综合类   7篇
自然地理   90篇
  2021年   13篇
  2020年   13篇
  2019年   8篇
  2018年   20篇
  2017年   19篇
  2016年   31篇
  2015年   25篇
  2014年   16篇
  2013年   43篇
  2012年   33篇
  2011年   31篇
  2010年   41篇
  2009年   37篇
  2008年   27篇
  2007年   38篇
  2006年   30篇
  2005年   32篇
  2004年   46篇
  2003年   26篇
  2002年   29篇
  2001年   22篇
  2000年   21篇
  1999年   10篇
  1998年   17篇
  1997年   13篇
  1996年   8篇
  1995年   14篇
  1994年   10篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1985年   12篇
  1984年   11篇
  1983年   8篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1971年   4篇
  1968年   5篇
排序方式: 共有882条查询结果,搜索用时 15 毫秒
691.
692.
A principal task of evaluating large wildfires is to assess fire's effect on the soil in order to predict the potential watershed response. Two types of soil water repellency tests, the water drop penetration time (WDPT) test and the mini-disk infiltrometer (MDI) test, were performed after the Hayman Fire in Colorado, in the summer of 2002 to assess the infiltration potential of the soil. Remotely sensed hyperspectral imagery was also collected to map post-wildfire ground cover and soil condition. Detailed ground cover measurements were collected to validate the remotely sensed imagery and to examine the relationship between ground cover and soil water repellency. Percent ash cover measured on the ground was significantly correlated to WDPT (r = 0.42; p-value < 0.0001), and the MDI test (r = − 0.37; p-value < 0.0001). A Mixture Tuned Matched Filter (MTMF) spectral unmixing algorithm was applied to the hyperspectral imagery, which produced fractional cover maps of ash, soil, and scorched and green vegetation. The remotely sensed ash image had significant correlations to the water repellency tests, WDPT (r = 0.24; p-value = 0.001), and the MDI test (r = − 0.21; p-value = 0.005). An iterative threshold analysis was also applied to the ash and water repellency data to evaluate the relationship at increasingly higher levels of ash cover. Regression analysis between the means of grouped data: MDI time vs. ash cover data (R2 =0.75) and vs. Ash MTMF scores (R2 = 0.63) yielded significantly stronger relationships. From these results we found on-the-ground ash cover greater than 49% and remotely sensed ash cover greater than 33% to be indicative of strongly water repellent soils. Combining these results with geostatistical analyses indicated a spatial autocorrelation range of 15 to 40 m. Image pixels with high ash cover (> 33%), including pixels within 15 m of these pixel patches, were used to create a likelihood map of soil water repellency. This map is a good indicator of areas where soil experienced severe fire effects—areas that likely have strong water repellent soil conditions and higher potential for post-fire erosion.  相似文献   
693.
A new computer program, 1DTempPro, is presented for the analysis of vertical one‐dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2‐Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat‐transport equations. Pre‐ and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface‐water exchange and also hydraulic conductivity for cases where hydraulic head is known.  相似文献   
694.
For several decades,quantification of riverbed grain size stratigraphic evolution has been based upon the active layer formulation(ALF),which unfortunately involves considerable uncertainty.While it is the sediment exchange across the bed surface that directly affects the riverbed stratigraphy,it has been assumed in the ALF that the sediment fraction at the lower interface of the active layer is a linear function of the sediment fraction in the flow.Here it is proposed that the sediment fraction of the sediment exchange flux is used directly in estimating the sediment fraction at the lower surface of the active layer.Together with the size-specific mass conservation for riverbed sediment,the modified approach is referred to as the surface-based formulation(SBF).When incorporated into a coupled non-capacity modelling framework for fluvial processes,the SBF leads to results that agree as well or better than those using ALF with laboratory and field observations.This is illustrated for typical cases featuring bed aggradation and degradation due to graded bed-load sediment transport.Systematic experiments on graded sediment transport by unsteady flows are warranted for further testing the modified formulation.  相似文献   
695.
The effects of temperature, diffusive boundary-layer thickness, and sediment composition on fluxes of inorganic N and P were estimated for sediment cores with oxidized surfaces from nearshore waters (2?C10?m) of a montane oligotrophic lake. Fluxes of N and P were not affected by diffusive boundary-layer thickness but were strongly affected by temperature. Below 16?°C, sediments sequestered small amounts of P and released small amounts of N. Above 16?°C, the seasonal maximum water temperature, sediments were substantial sources of N (NH4 +?CN?=?2?C24?mg?m?2 d?1; NO3 ??+?NO2 ??CN?=?2?C5?mg?m?2 d?1) and P (0.1?C0.4?mg?m?2 d?1), indicating potential responsiveness of sediment?Cwater nutrient exchange, and of corresponding phytoplankton growth, to synoptic warming.  相似文献   
696.
The extreme 2010-2011 wet season resulted in highly elevated Burdekin River discharge into the Great Barrier Reef lagoon for a period of 200 days, resulting in a large flood plume extending >50km offshore and >100km north during peak conditions. Export of suspended sediment was dominated by clay and fine silt fractions and most sediment initially settled within ~10km of the river mouth. Biologically-mediated flocculation of these particles enhanced deposition in the initial low salinity zone. Fine silt and clay particles and nutrients remaining in suspension, were carried as far as 100km northward from the mouth, binding with planktonic and transparent exopolymer particulate matter to form large floc aggregates (muddy marine snow). These aggregates, due to their sticky nature, likely pose a risk to benthic organisms e.g. coral and seagrass through smothering, and also by contributing to increased turbidity during wind-induced resuspension events.  相似文献   
697.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   
698.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling‐based approaches are expensive and provide low‐density spatial and temporal information. Time‐lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation‐related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling‐based approaches for assessing emplacement and monitoring biostimulation‐based remediation. Field studies demonstrating the ability of time‐lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment‐related geochemical properties. Crosshole radar zero‐offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time‐lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost‐effective surface‐based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.  相似文献   
699.
700.
J. Lewis 《Ground water》2016,54(5):740-744
This technical note describes an effective and inexpensive field technique for measuring the saturated hydraulic conductivity of both undisturbed cores and repacked soil samples. The method requires no specialized equipment; everything that is required can be obtained in a hardware store. The method is a straightforward field implementation of the widely used falling‐head laboratory analysis directly derived from Darcy's law. As such, it sidesteps the need for empirical assumptions about soil texture and the relationship between saturated and unsaturated flow components which many permeameter‐based methods rely upon. The method is shown to produce results that are consistent with K values obtained elsewhere in the same homogeneous sand formation. Furthermore, the proposed method is useful for measuring hydraulic conductivity in drill cuttings obtained from direct push or auguring drill techniques, which cannot be done with any other field method. The range of hydraulic conductivity values that this test is appropriate for is on the order of 1E ? 7 m/s to 1E ? 3 m/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号