全文获取类型
收费全文 | 129篇 |
免费 | 0篇 |
国内免费 | 7篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 15篇 |
地球物理 | 9篇 |
地质学 | 78篇 |
海洋学 | 3篇 |
天文学 | 17篇 |
自然地理 | 10篇 |
出版年
2019年 | 1篇 |
2014年 | 2篇 |
2013年 | 10篇 |
2012年 | 4篇 |
2011年 | 4篇 |
2010年 | 8篇 |
2009年 | 4篇 |
2008年 | 5篇 |
2007年 | 1篇 |
2006年 | 6篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 3篇 |
1997年 | 11篇 |
1996年 | 9篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 8篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1970年 | 1篇 |
1966年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有136条查询结果,搜索用时 15 毫秒
61.
幔源角闪石巨晶中硫化物熔融包裹体研究 总被引:1,自引:0,他引:1
硫化物熔融包裹体研究是认识硫化物矿床成矿元素来源和演化的重要手段,由于硫化物熔融包裹体的体积较小(粒径仅为10~20μm),其详细化学元素组分的难以获得一直是制约进一步研究的瓶颈。笔者在前人研究的基础上,借助于扫描电镜、电镜能谱和二次飞行时间离子探针(Tof-SIMS)对产于铜陵地区角闪石巨晶中的硫化物熔融包裹体进行了详细的研究,首次获得了一套精确的矿物化学资料和元素分布图。矿物学研究表明,角闪石巨晶在上地幔和下地壳均有结晶,温压区间分别为T:850~900℃(温度),P:0.70×109~0.82×109Pa(压力),对应深度D:23.10~27.06km;和T:900~950℃,P:1.09×109~1.17×109Pa,D:35.97~38.61km。元素分布图显示,硫化物熔融包裹体主要有两种元素组成体系:S-Fe-Mn-Ni-Rb-Sr-Ba和S-Fe-Cu-Sr,幔源硫化物体系中Mn、Ni、Rb、Ba等元素具有相似的性质特征可共溶,与Cu则表现出不混溶。在铜陵地区,上地幔的部分熔融形成了一套碱性玄武岩浆,后受岩浆底侵作用和壳幔相互作用影响,底侵进入下地壳深位岩浆房,发生结晶分异和同化混染作用,形成一套轻度演化的玄武岩浆,可能为辉长质。上地幔和下地壳的角闪石巨晶分别是由上地幔碱性玄武岩浆和下地壳轻度演化的玄武岩浆(辉长质)高压下结晶的产物。当上地幔碱性玄武岩浆上侵到下地壳深位岩浆房以后,发生结晶分异作用,又由于地壳硅镁层的混染作用,使得玄武岩浆中硫溶解度降低,促其熔离,从而释放大量的硫(S,以及Ni、Cu、Cr)。角闪石巨晶中的硫化物熔融包裹体正是在下地壳深位岩浆房中,由正在结晶的角闪石巨晶在结晶分异和轻度演化的玄武质岩浆中捕获的不混溶硫化物熔融液滴形成的。铜陵地区在中生代经历了一个长期的大规模的岩浆底侵作用和壳幔相互作用过程,由于下地壳硅镁层混染作用使得轻度演化的玄武岩浆释放大量硫,必然会在莫霍面附近形成大规模高浓度的硫富集区,这些组分在岩浆上侵作用、地壳减薄作用或者裂谷作用的影响下很容易再活化,进入区域岩浆-热液流体系统,最终参与形成区域大规模的硫化物矿床。 相似文献
62.
ANDREW C. SCOTT 《Geology Today》1991,7(2):58-61
From a study of extant arthropods (particularly insects) and plants it is clear that there are many close interactions between the two groups, which must have co-evolved over a considerable period of time. Surprisingly, the fossil record of such interactions has hardly been studied and has therefore often been assumed to be non-existent. Interactions include feeding (e.g. leaf and spore/pollen feeding, leaf mining and wood boring), shelter (e.g. the formation of galls), transport, and reproduction (flower pollination). There is fossil evidence for all of these interactions from the time that arthropods and plants first colonized the land. The shortage of data results from lack of study rather than a real absence of interactions. 相似文献
63.
GARY G. LASH 《Sedimentology》1987,34(2):227-235
Petrographic analysis of Middle Ordovician turbidite sandstones of the Greenwich slice of the Hamburg klippe (eastern Pennsylvania), inferred to be part of a fossil subduction complex, define three coeval petrofacies. The Jonestown petrofacies was derived from felsic plutonic and less abundant metasedimentary rocks, whereas the Windsor Township, the most extensive petrofacies, and Werleys Corner petrofacies were derived from sources characterized by various proportions of sedimentary/metasedimentary, plutonic, and volcanic rocks. The presence of minor but conspicuous extrabasinal carbonate and microlitic volcanic lithic fragments together with higher percentages of polycrystalline quartz, serve to distinguish the Werleys Corner from the Windsor Township petrofacies. It is conceivable that sandstones of the Greenwich slice were derived from microplates inferred to have existed to the southeast of the proto-North American plate in Early Palaeozoic time. The variations in sandstone composition along the length of the Greenwich slice may be explained by post-accretion tectonic juxtaposition of petrofacies derived from various sources. An equally plausible explanation involves transverse infilling of a channelized longitudinal transport system (Windsor Township petrofacies) by sediment derived from compositionally diverse source terranes orthogonal to the trench (Jonestown and Werleys Corner petrofacies). 相似文献
64.
Raman peaks of various hydrates in the H20-NaCl-CaCl2 system have been previously identified, but a quantitative relationship between the Raman peaks and XNaCl (i.e.,NaCl/ (NaCl+CaCl2)) has not been established, mainly due to the difficulty to freeze the solutions. This problem was solved by adding alumina powder to the solutions to facilitate nucleation of crystals. Cryogenic (-185℃) Raman spectroscopic studies of alumina-spiced solutions indicate that XNaCl is linearly correlated with the total peak area fraction of hydrohalite. Capsules of solutions made from silica capillary were prepared to simulate fluid inclusions. Most of these artificial fluid inclusions could not be totally frozen even at temperatures as low as -185℃, and the total peak area fraction of hydrohalite is not correlated linearly with XNaCI. However, the degree of deviation (△XNaCl) from the linear correlation established earlier is related to the amount of residual solution, which is reflected by the ratio (r) of the baseline "bump" area, resulting from the interstitial unfrozen brine near 3435 cm^-1, and the total hydrate peak area between 3350 and 3600 cm^-1. A linear correlation between △XNaCl and r is established to estimate XNaCl from cryogenic Raman spectroscopic analysis for fluid inclusions. 相似文献
65.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects. 相似文献
66.
67.
Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites
68.
69.
70.
Alexander N. KROT Edward R. D. SCOTT Michael E. ZOLENSKY 《Meteoritics & planetary science》1997,32(1):31-49
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions. 相似文献