全文获取类型
收费全文 | 43782篇 |
免费 | 531篇 |
国内免费 | 304篇 |
专业分类
测绘学 | 1051篇 |
大气科学 | 2861篇 |
地球物理 | 8745篇 |
地质学 | 15150篇 |
海洋学 | 3744篇 |
天文学 | 10813篇 |
综合类 | 97篇 |
自然地理 | 2156篇 |
出版年
2021年 | 408篇 |
2020年 | 449篇 |
2019年 | 453篇 |
2018年 | 1043篇 |
2017年 | 946篇 |
2016年 | 1161篇 |
2015年 | 643篇 |
2014年 | 1128篇 |
2013年 | 2168篇 |
2012年 | 1276篇 |
2011年 | 1721篇 |
2010年 | 1529篇 |
2009年 | 2162篇 |
2008年 | 1787篇 |
2007年 | 1799篇 |
2006年 | 1676篇 |
2005年 | 1252篇 |
2004年 | 1253篇 |
2003年 | 1173篇 |
2002年 | 1122篇 |
2001年 | 1008篇 |
2000年 | 955篇 |
1999年 | 826篇 |
1998年 | 846篇 |
1997年 | 816篇 |
1996年 | 691篇 |
1995年 | 702篇 |
1994年 | 623篇 |
1993年 | 536篇 |
1992年 | 501篇 |
1991年 | 509篇 |
1990年 | 581篇 |
1989年 | 498篇 |
1988年 | 457篇 |
1987年 | 584篇 |
1986年 | 484篇 |
1985年 | 610篇 |
1984年 | 690篇 |
1983年 | 656篇 |
1982年 | 573篇 |
1981年 | 605篇 |
1980年 | 500篇 |
1979年 | 472篇 |
1978年 | 476篇 |
1977年 | 434篇 |
1976年 | 420篇 |
1975年 | 417篇 |
1974年 | 396篇 |
1973年 | 426篇 |
1971年 | 260篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
Sukhanova I. N. Flint M. V. Sakharova E. G. Fedorov A. V. Makkaveev P. N. Nedospasov A. A. 《Oceanology》2018,58(6):802-816
Oceanology - Based on the material obtained in the spring–summer season of 2016, the composition and quantitative distribution of phytoplankton in the Ob estuary and over the Kara Sea shelf... 相似文献
302.
It is suggested that Bouvet Island is the surface manifestation of a mantle plume which has resulted in the creation of a chain of seamounts in the South Atlantic and a general shoaling of the region.The strike of two newly defined large fracture zones borth and south of the Bouvet Island pedestal have been utilized to determine a pole of rotation at 12.5°S, 12.5°W for the Africa-Antarctica motion. A pole at 75°S, 13°E has been calculated for the South America-Antarctica motion. At the triple junction the South America-Africa relative motion is 3.3 cm yr-1 (whole rate) at 075°. The Africa-Antarctica motion is 1.7 cm yr-1 at 065° and the South America-Antarctica motion is 1.6 cm yr-1 at 085. 相似文献
303.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
304.
<正>Structure and composition of the Uralian ophiolites reflect a large spectrum of geodynamic environment of their creation during Paleozoic time:from mid-ocean ridge,rift zone in continental margin,and suprasubduction spreading zone(SSZ)with resultant lherzolite or harzburgite ophiolite type(LOT and HOT).Residual 相似文献
305.
Boyuan Zhu Yao Yue Alistair G.L. Borthwick Wenjun Yu Enhang Liang Jinwu Tang Yuanfang Chai Yitian Li 《地球表面变化过程与地形》2020,45(11):2689-2705
In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge ≥ 60 000 m3 s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary. © 2020 John Wiley & Sons, Ltd. 相似文献
306.
James?G.?WilliamsEmail authorView authors OrcID profile Dale?H.?Boggs 《Celestial Mechanics and Dynamical Astronomy》2016,126(1-3):89-129
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative. 相似文献
307.
We present the 2-D, two fluid (ions + neutrals) numerical simulations that we are carrying out in order to study the ambipolar filamentation process, in which a magnetized, partially ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, and causes the ions and the magnetic flux to condense in the most ionized regions, resulting in a filamentary structure where initial ionization inhomogeneities are amplified. This mechanism might help to explain some features observed in magnetized and partially ionized astrophysical plasmas as the interstellar medium. 相似文献
308.
309.
Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys 下载免费PDF全文
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High‐resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process‐based river management and restoration. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
310.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V
s
4.6 km/sec) overlying a well developed low velocity zone (V
s
4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189. 相似文献