首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43782篇
  免费   531篇
  国内免费   304篇
测绘学   1051篇
大气科学   2861篇
地球物理   8745篇
地质学   15150篇
海洋学   3744篇
天文学   10813篇
综合类   97篇
自然地理   2156篇
  2021年   408篇
  2020年   449篇
  2019年   453篇
  2018年   1043篇
  2017年   946篇
  2016年   1161篇
  2015年   643篇
  2014年   1128篇
  2013年   2168篇
  2012年   1276篇
  2011年   1721篇
  2010年   1529篇
  2009年   2162篇
  2008年   1787篇
  2007年   1799篇
  2006年   1676篇
  2005年   1252篇
  2004年   1253篇
  2003年   1173篇
  2002年   1122篇
  2001年   1008篇
  2000年   955篇
  1999年   826篇
  1998年   846篇
  1997年   816篇
  1996年   691篇
  1995年   702篇
  1994年   623篇
  1993年   536篇
  1992年   501篇
  1991年   509篇
  1990年   581篇
  1989年   498篇
  1988年   457篇
  1987年   584篇
  1986年   484篇
  1985年   610篇
  1984年   690篇
  1983年   656篇
  1982年   573篇
  1981年   605篇
  1980年   500篇
  1979年   472篇
  1978年   476篇
  1977年   434篇
  1976年   420篇
  1975年   417篇
  1974年   396篇
  1973年   426篇
  1971年   260篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
Sukhanova  I. N.  Flint  M. V.  Sakharova  E. G.  Fedorov  A. V.  Makkaveev  P. N.  Nedospasov  A. A. 《Oceanology》2018,58(6):802-816
Oceanology - Based on the material obtained in the spring–summer season of 2016, the composition and quantitative distribution of phytoplankton in the Ob estuary and over the Kara Sea shelf...  相似文献   
302.
It is suggested that Bouvet Island is the surface manifestation of a mantle plume which has resulted in the creation of a chain of seamounts in the South Atlantic and a general shoaling of the region.The strike of two newly defined large fracture zones borth and south of the Bouvet Island pedestal have been utilized to determine a pole of rotation at 12.5°S, 12.5°W for the Africa-Antarctica motion. A pole at 75°S, 13°E has been calculated for the South America-Antarctica motion. At the triple junction the South America-Africa relative motion is 3.3 cm yr-1 (whole rate) at 075°. The Africa-Antarctica motion is 1.7 cm yr-1 at 065° and the South America-Antarctica motion is 1.6 cm yr-1 at 085.  相似文献   
303.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
304.
<正>Structure and composition of the Uralian ophiolites reflect a large spectrum of geodynamic environment of their creation during Paleozoic time:from mid-ocean ridge,rift zone in continental margin,and suprasubduction spreading zone(SSZ)with resultant lherzolite or harzburgite ophiolite type(LOT and HOT).Residual  相似文献   
305.
In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge ≥ 60 000 m3 s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary. © 2020 John Wiley & Sons, Ltd.  相似文献   
306.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   
307.
We present the 2-D, two fluid (ions + neutrals) numerical simulations that we are carrying out in order to study the ambipolar filamentation process, in which a magnetized, partially ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, and causes the ions and the magnetic flux to condense in the most ionized regions, resulting in a filamentary structure where initial ionization inhomogeneities are amplified. This mechanism might help to explain some features observed in magnetized and partially ionized astrophysical plasmas as the interstellar medium.  相似文献   
308.
309.
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High‐resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process‐based river management and restoration. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
310.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V s 4.6 km/sec) overlying a well developed low velocity zone (V s 4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号