全文获取类型
收费全文 | 43787篇 |
免费 | 532篇 |
国内免费 | 304篇 |
专业分类
测绘学 | 1051篇 |
大气科学 | 2861篇 |
地球物理 | 8748篇 |
地质学 | 15151篇 |
海洋学 | 3744篇 |
天文学 | 10813篇 |
综合类 | 97篇 |
自然地理 | 2158篇 |
出版年
2021年 | 408篇 |
2020年 | 449篇 |
2019年 | 453篇 |
2018年 | 1043篇 |
2017年 | 946篇 |
2016年 | 1161篇 |
2015年 | 644篇 |
2014年 | 1128篇 |
2013年 | 2168篇 |
2012年 | 1276篇 |
2011年 | 1722篇 |
2010年 | 1529篇 |
2009年 | 2162篇 |
2008年 | 1787篇 |
2007年 | 1802篇 |
2006年 | 1676篇 |
2005年 | 1253篇 |
2004年 | 1253篇 |
2003年 | 1173篇 |
2002年 | 1122篇 |
2001年 | 1008篇 |
2000年 | 955篇 |
1999年 | 826篇 |
1998年 | 846篇 |
1997年 | 816篇 |
1996年 | 691篇 |
1995年 | 702篇 |
1994年 | 623篇 |
1993年 | 536篇 |
1992年 | 501篇 |
1991年 | 509篇 |
1990年 | 581篇 |
1989年 | 498篇 |
1988年 | 457篇 |
1987年 | 584篇 |
1986年 | 484篇 |
1985年 | 610篇 |
1984年 | 690篇 |
1983年 | 656篇 |
1982年 | 573篇 |
1981年 | 605篇 |
1980年 | 500篇 |
1979年 | 472篇 |
1978年 | 476篇 |
1977年 | 434篇 |
1976年 | 420篇 |
1975年 | 417篇 |
1974年 | 396篇 |
1973年 | 426篇 |
1971年 | 260篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
High quality VNIR spectra of 15 Vestoids, small asteroids that are believed to originate from Vesta, were collected and compared to laboratory spectra and compositional data for selected HED meteorites. A combination of spectral parameters such as band centers, and factors derived from Modified Gaussian Model fits (band centers, band strengths, calculation of the low to high-Ca pyroxene ratio) were used to establish if each Vestoid appeared most like eucrite or diogenite material, or a mixture of the two (howardite). This resulted in the identification of the first asteroid with a ferroan diogenite composition, 2511 Patterson. This asteroid can be used to constrain the size of diogenite magma chambers within the crust of Vesta. The Vestoids indicate that both large-scale homogeneous units (>5 km) and smaller-scale heterogeneity (<1 km) exist on the surface of Vesta, as both monomineralogic (eucrite or diogenite material alone) and mixed (both eucrite and diogenite) spectra are observed. The small-scale of the variation observed within the Vestoid population is predicted by the partial melting model, which has multiple intrusions penetrating into the crust of Vesta. It is much more difficult to reconcile the observations here with the magma ocean model, which would predict much more homogeneous layers on a large-scale both at the surface and with depth. 相似文献
992.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction
between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling
matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The
correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon
scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies
the observational data. 相似文献
993.
Over 1000 laboratory measurements of the 2-4 mm-wavelength opacity of ammonia have been made under simulated jovian atmospheric conditions using a high-precision laboratory system developed at Georgia Tech. These laboratory measurements of the opacity of ammonia were made of various gas mixtures of hydrogen (∼77.5-85.5%), helium (∼12.5-13.5%), and ammonia (1-10%) at pressures between 1 and 3 bars and temperatures between 200 and 300 K. Laboratory measurements were also made of the opacity of pure ammonia at pressures between 0.05 and 1 bar and temperatures between 200 and 300 K. Using these millimeter-wavelength measurements and close to 2000 cm-wavelength measurements made by Hanley et al. (2009), a new consistent model has been developed to accurately characterize the absorption spectra of ammonia in a hydrogen/helium atmosphere in the 1 mm to 30 cm wavelength range. This model can be used in the 1-30 cm wavelength range at pressures up to 20 bars and temperatures from 200 to 500 K and in the 1 mm to 1 cm wavelength range at pressures up to 3 bars and temperatures from 200 to 300 K. These measurements and the accompanying model will enable better interpretation of the centimeter- and millimeter-wavelength emission spectra of the jovian planets. 相似文献
994.
A. Le Gall M.A. Janssen A.G. Hayes C. Savage R.D. Lorenz R.L. Kirk S. Wall E.R. Stofan the Cassini Radar Team 《Icarus》2011,213(2):608-624
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics. 相似文献
995.
Özgür Gültekin Emine Rızaoǧlu K. Gediz Akdeniz 《Journal of Astrophysics and Astronomy》2013,34(4):349-355
The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5R–3R region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz. The R-variations of wave numbers necessary for the above calculations are evaluated numerically, solving the cubic dispersion relation with the dielectric response derived from the quasi-linear Vlasov equation for the left-circularly polarized ion-cyclotron waves. 相似文献
996.
S. Alan Stern Jason C. Cook Jean -Yves Chaufray Paul D. Feldman G. Randall Gladstone Kurt D. Retherford 《Icarus》2013
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data. 相似文献
997.
Andrew W. Beck Timothy J. McCoy Jessica M. Sunshine Christina E. Viviano Catherine M. Corrigan Takahiro Hiroi Rhiannon G. Mayne 《Meteoritics & planetary science》2013,48(11):2155-2165
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta. 相似文献
998.
G. Le Chat A. Zaslavsky N. Meyer-Vernet K. Issautier S. Belheouane F. Pantellini M. Maksimovic I. Zouganelis S. D. Bale J. C. Kasper 《Solar physics》2013,286(2):549-559
New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal despite its low mass. The WAVES instruments on the twin Solar TErrestrial RElations Observatory spacecraft have observed interplanetary nanodust particles since shortly after their launch in 2006. After describing a new and improved analysis of the last five years of STEREO/WAVES Low Frequency Receiver data, we present a statistical survey of the nanodust characteristics, namely the rise time of the pulse voltage and the flux of nanodust. We show that previous measurements and interplanetary dust models agree with this survey. The temporal variations of the nanodust flux are also discussed. 相似文献
999.
N. R. Ikhsanov V. Y. Kim N. G. Beskrovnaya L. A. Pustil’nik 《Astrophysics and Space Science》2013,346(1):105-109
The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67?hr and $|\dot{P}| \leq1.6 \times10^{-9}\,{\rm s\,s^{-1}}$ . It is associated with the supernova remnant RCW?103 and is widely believed to be a ~2000?yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ~3000?km and the mass-accretion rate $\sim 10^{14}\,{\rm g\,s^{-1}}$ . This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ~1012?G and that a presence of $\gtrsim10^{-7}\,{\rm M_{\odot}}$ magnetic slab would be sufficient to explain the origin and current state of the pulsar. 相似文献
1000.
In this paper, we have constructed a five dimensional LRS Bianchi type I cosmological model with wet dark fluid (WDF) in general relativity with the matter field described as bulk viscosity. It is found that in presence of bulk viscosity an inflationary effective stiff fluid cosmological model is obtained, whereas in absence of bulk viscosity the wet dark fluid degenerate to stiff fluid. Some physical and geometrical properties of the model are also discussed. 相似文献