首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1518篇
  免费   44篇
  国内免费   4篇
测绘学   31篇
大气科学   93篇
地球物理   378篇
地质学   541篇
海洋学   125篇
天文学   279篇
综合类   8篇
自然地理   111篇
  2022年   10篇
  2021年   14篇
  2020年   16篇
  2019年   15篇
  2018年   34篇
  2017年   14篇
  2016年   42篇
  2015年   18篇
  2014年   49篇
  2013年   67篇
  2012年   51篇
  2011年   50篇
  2010年   61篇
  2009年   75篇
  2008年   59篇
  2007年   59篇
  2006年   66篇
  2005年   46篇
  2004年   48篇
  2003年   37篇
  2002年   31篇
  2001年   27篇
  2000年   22篇
  1999年   20篇
  1998年   21篇
  1997年   13篇
  1996年   34篇
  1995年   17篇
  1994年   17篇
  1993年   16篇
  1992年   14篇
  1991年   12篇
  1990年   13篇
  1989年   11篇
  1988年   20篇
  1987年   15篇
  1986年   15篇
  1985年   32篇
  1984年   25篇
  1983年   38篇
  1982年   36篇
  1981年   27篇
  1980年   23篇
  1979年   38篇
  1978年   33篇
  1977年   19篇
  1976年   22篇
  1975年   18篇
  1974年   25篇
  1973年   29篇
排序方式: 共有1566条查询结果,搜索用时 7 毫秒
41.
Covenants and restrictions (C&Rs) have increased in popularity in recent decades, being commonly applied in new residential developments. Despite the fact that developers are more commonly writing C&Rs for their developments, little research has investigated how well C&Rs actually fit the preferences of residents. Recognizing this gap in the literature, this paper examines the fit of neighborhood C&Rs with resident preferences in Porter County, Indiana, a growing suburban/exurban place in the Chicago Metropolitan Statistical Area. The researcher conducted in-depth interviews with 51 residents to ascertain how well C&Rs fit resident preferences. The majority of interviewees stated that C&Rs match resident preferences because they believed that C&Rs promoted subdivision tidiness and worked to support property values. The minority view was that C&Rs do not fit because they are too strict and residents do not obey C&Rs. Interviewees who perceived a fit were more likely to have a lower level of engagement with C&Rs and were more likely to live in developments with no C&R enforcement attempts by the homeowners’ association (HOA). The results suggest the particular content of C&Rs does not seem to fit resident preference; rather the fact that C&Rs are not enforced fits resident preference. Seemingly, residents are content being unaware of the C&Rs, then they do not know if someone is breaking the rules or not. This may imply that residents would not want to have C&Rs in the first place.  相似文献   
42.
The seismic refraction reversed profiling technique has been used to investigate the topography of the last interglacial soil (paleosol S1) within the central Chinese Loess Plateau near Xifeng. The results suggest an essentially flat-lying soil at a depth which varies by only a few meters over an area of more than 10 km2. In addition, the results indicate a high-velocity layer at 50-60 m depth which is thought to coincide with a layer of carbonate concretions at the base of paleosol S5. The results agree well with the local loess-paleosol stratigraphy for this area and indicate that the seismic refraction method is a rapid technique for investigating paleotopography.  相似文献   
43.
The Eagle Ni–Cu–(PGE) deposit is hosted in mafic–ultramafic intrusive rocks associated with the Marquette–Baraga dike swarm in northern Michigan. Sulfide mineralization formed in association with picritic magmatism in a dynamic magma conduit during the early stages in the development of the ~1.1?Ga Midcontinent Rift System. Four main types of sulfide mineralization have been recognized within the Eagle deposit: (1) disseminated sulfides in olivine-rich rocks; (2) rocks with semi-massive sulfides located both above and below the massive sulfide zone; (3) massive sulfides; and (4) sulfide veins in sedimentary country rocks. The disseminated, massive and lower semi-massive sulfide zones are typically composed of pyrrhotite, pentlandite and chalcopyrite, whereas the upper semi-massive sulfide ore zone also contains pyrrhotite, pentlandite, and chalcopyrite, but has higher cubanite content. Three distinct types of sulfide mineralization are present in the massive sulfide zone: IPGE-rich, PPGE-rich, and PGE-unfractioned. The lower and upper semi-massive sulfide zones have different PGE compositions. Samples from the lower semi-massive sulfide zone are characterized by unfractionated PGE patterns, whereas those from the upper semi-massive sulfide zone show moderate depletion in IPGE and moderate enrichment in PPGE. The mantle-normalized PGE patterns of unfractionated massive and lower semi-massive sulfides are subparallel to those of the disseminated sulfides. The results of numerical modeling using PGE concentrations recalculated to 100% sulfide (i.e., PGE tenors) and partition coefficients of PGE between sulfide liquid and magma indicate that the disseminated and unfractionated massive sulfide mineralization formed by the accumulation of primary sulfide liquids with similar R factors between 200 and 300. In contrast, the modeled R factor for the lower semi-massive sulfide zone is <100. The fractionated sulfide zones such as those of the IPGE-rich and PPGE-rich massive sulfides and the upper semi-massive sulfide zone can be explained by fractional crystallization of monosulfide solid solution from sulfide liquids. The results of numerical modeling indicate that the sulfide minerals in the upper semi-massive sulfide zone are the products of crystallization of fractionated sulfide liquids derived from a primary sulfide liquid with an R factor similar to that for the disseminated sulfide mineralization. Interestingly, the modeled parental sulfide liquid for the IPGE-rich and PPGE-rich massive sulfide zones has a higher R factor (~400) than that for the unfractionated massive sulfide mineralization. Except one sample which has unusually high IPGE and PPGE contents, all other samples from the Cu-rich sulfide veins in the footwall of the intrusion are highly depleted in IPGE and enriched in PPGE. These signatures are generally consistent with highly fractionated sulfide liquids expelled from crystallizing sulfide liquid. Collectively, our data suggest that at least four primary sulfide liquids with different R factors (<100, 200–300, ~400) were involved in the formation of the Eagle magmatic sulfide deposit. We envision that the immiscible sulfide liquids were transported from depth by multiple pulses of magma passing through the Eagle conduit system. The sulfide liquids were deposited in the widened part of the conduit system due to the decreasing velocity of magma flow. The presence of abundant olivine in some of the sulfide ore zones indicates that the ascending magma also carried olivine crystals. Sulfide saturation was attained in the parental magma due in large part to the assimilation of country rock sulfur at depth.  相似文献   
44.
45.
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (FeOx) relative to the Na-dithionite extractable fraction (FeDi), with generally high FeOx:FeDi ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe5HO3·4H2O) with lesser amounts of goethite (α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.  相似文献   
46.
Mg isotope ratios (26Mg/24Mg) are reported in soil pore-fluids, rain and seawater, grass and smectite from a 90 kyr old soil, developed on an uplifted marine terrace from Santa Cruz, California. Rain water has an invariant 26Mg/24Mg ratio (expressed as δ26Mg) at −0.79 ± 0.05‰, identical to seawater δ26Mg. Detrital smectite (from the base of the soil profile, and therefore unweathered) has a δ26Mg value of 0.11‰, potentially enriched in 26Mg by up to 0.3‰ compared to the bulk silicate Earth Mg isotope composition (although within the range of all terrestrial silicates). The soil pore-waters show a continuous profile with depth for δ26Mg, ranging from −0.99‰ near the surface to −0.43‰ at the base of the profile. Shallow pore-waters (<1 m) have δ26Mg values that are similar to, or slightly lower than the rain waters. This implies that the degree of biological cycling of Mg in the pore-waters is relatively small and is quantified as <32%, calculated using the average Mg isotope enrichment factor between grass and rain (δ26Mggrass-δ26Mgrain) of 0.21‰. The deep pore-waters (1-15 m deep) have δ26Mg values that are intermediate between the smectite and rain, ranging from −0.76‰ to −0.43‰, and show a similar trend with depth compared to Sr isotope ratios. The similarity between Sr and Mg isotope ratios confirms that the Mg in the pore-waters can be explained by a mixture between rain and smectite derived Mg, despite the fact that Mg and Sr concentrations may be buffered by the exchangeable reservoir. However, whilst Sr isotope ratios in the pore-waters span almost the complete range between mineral and rain inputs, Mg isotopes compositions are much closer to the rain inputs. If Mg and Sr isotope ratios are controlled uniquely by a mixture, the data can be used to estimate the mineral weathering inputs to the pore-waters, by correcting for the rain inputs. This isotopic correction is compared to the commonly used chloride correction for precipitation inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.  相似文献   
47.
The Hudson-Raritan Estuary is one of several United States coastal areas where chemical data have suggested a potential for contaminant-related biological effects, and multiyear intensive bioeffects surveys have been conducted by the National Oceanic and Atmospheric Administration. The severity and spatial patterns in sediment toxicity were determined in an estuary-wide survey during spring 1991 using amphipods, bivalve larvae, and luminescent bacteria as test organisms. Spatial patterns in toxicity corresponded to the distributions of a number of toxic chemicals in the sediments. Areas that exhibited the greatest sediment toxicity included the upper East River, Arthur Kill, Newark Bay, and Sandy Hook Bay. The lower Hudson River adjacent to Manhattan Island, upper New York Harbor, lower New York Harbor off Staten Island, and parts of western Raritan Bay generally showed lower toxicity. Supporting chemical analyses of the sediments, including acid-volatile sulfide and simultaneously-extracted metals, suggested that metals were generally not the cause of the observed toxicity, with the possible exception of mercury. Among all contaminants analyzed, toxicity was most strongly associated with polynuclear aromatic hydrocarbons, which were substantially more concentrated in toxic samples than in nontoxic samples, and which frequently exceeded sediment quality criteria.  相似文献   
48.
49.
Abstract The crystallography and crystal chemistry of a new calcium-titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 ± 0.002 nm and c = 0.492 ± 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)UNK | (001)mel and <10T0>UNK | <100>mel. If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3ml or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3–1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti-free analog with a formula of Ca3Al2Si4O14 synthesized by Paque et al. (1994) is thought to be related structurally but with the octahedral site being occupied by Al, that is   相似文献   
50.
We have analyzed all lines in the MIR (8 to 20 micron) spectra of a quiescent and two time-frames of an active prominence. In the quiescent prominence, in addition to those lines found by Zirker (1985), we have identified a higher excitation hydrogen line and two helium recombination lines. Accounting for instrumental broadening, we can further separate out the Doppler and the Stark contributions to the line width. The former yields maximum temperatures of 6200 K, 34000 K and 12000 K and the latter electric field strengths of 7, 17, and 10 V cm-1 for the above prominences, respectively. We show that these electric fields when divided by 2.2 are equal to the normal electric field in Holtsmark's quasi-static Stark broadening theory. Hence, we obtain electron densities of N3=2.4(0.3), 9.1(1.2), and 5.5(0.6) in units of 1010 cm-3 respectively. Using the same assumptions as made by Zirker, namely, (1) the strongest line (7-6) is optically thin, (2) the population of the lower level (n=6) is determined by direct radiative recombination and photo-ionization, (3) the equality of proton and electron densities, and (4) the thickness of the prominence is at least 108 cm, we derive a new inequality, Ne 1.83 × 108 T0.75 e-2195/T. Substituting our maximum temperatures into the right-hand side, we find upper bound Ne values of 9, 43, and 30 in the same units as above. These upper bound values are comfortably higher than our measurement, unlike those of Zirker's derived from the same set of assumptions. We have also observed the helium recombination spectrum which has been postulated by Tandberg-Hanssen as one of three possible ways of equilibrating the triplet/singlet ratio. Surprisingly, it is present in the quiescent as well as in the active prominence. We show that no meaningful values can be found for the turbulent velocities by combining the helium with the hydrogen line widths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号