首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   46篇
  国内免费   23篇
测绘学   53篇
大气科学   159篇
地球物理   284篇
地质学   626篇
海洋学   124篇
天文学   290篇
综合类   11篇
自然地理   133篇
  2023年   9篇
  2021年   16篇
  2020年   17篇
  2019年   17篇
  2018年   34篇
  2017年   29篇
  2016年   40篇
  2015年   25篇
  2014年   44篇
  2013年   71篇
  2012年   54篇
  2011年   74篇
  2010年   74篇
  2009年   117篇
  2008年   80篇
  2007年   96篇
  2006年   77篇
  2005年   86篇
  2004年   55篇
  2003年   49篇
  2002年   54篇
  2001年   41篇
  2000年   40篇
  1999年   32篇
  1998年   26篇
  1997年   22篇
  1996年   20篇
  1995年   19篇
  1994年   21篇
  1993年   16篇
  1992年   17篇
  1991年   14篇
  1990年   14篇
  1988年   12篇
  1986年   12篇
  1985年   16篇
  1984年   13篇
  1983年   22篇
  1982年   16篇
  1981年   16篇
  1980年   12篇
  1979年   12篇
  1978年   10篇
  1977年   8篇
  1976年   15篇
  1975年   8篇
  1973年   15篇
  1972年   15篇
  1971年   11篇
  1970年   9篇
排序方式: 共有1680条查询结果,搜索用时 422 毫秒
211.
We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars’ oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 104 years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius≈5- may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size (≈10-) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos.  相似文献   
212.
213.
Amplitude distributions, which are nearly Gaussian, have been calculated for radial velocity, continuum brightness, spectral line equivalent width and spectral line central residual intensity fluctuations measured from high-dispersion high-resolution spectrograms taken at the center of the solar disk. The RMS and skewness S for each distribution have been calculated in a manner which allows testing of the homogeneity of the granulation pattern (i.e. variations in its statistics across the solar disk and with time). Pattern inhomogeneity across the disk is strongly indicated, and further evidence suggesting appreciable pattern persistence over time intervals 15 minutes is presented. The possibilities for investigations of S and its associated bi-spectrum are discussed. The qualitative values of S obtained are shown not to be due to unusually bright, rising granules (though a statistical tendency towards such granules is possible). An attempt to explain S for continuum brightness fluctuations in terms of the nonlinear effects of Planckian emission and opacity fluctuations in a stratified photosphere, leads to contradiction with the measured amplitude distributions, a contradiction which is probably due to an oversimplified treatment of radiative transfer in an inhomogeneous photosphere.  相似文献   
214.
215.
Moonquakes and lunar tectonism   总被引:1,自引:0,他引:1  
With the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon. The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:
  1. Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.
  2. The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toks?zet al., p. 490, for further discussion of seismic evidence of a lunar crust.)
  3. Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.
  4. In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point.
These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.  相似文献   
216.
Twenty-seven black guillemot eggs and 39 livers were analysed for polychlorinated biphenyls (PCBs), chlorinated pesticides including chlordane-related compounds and toxaphene, and polybrominated diphenylethers (PBDEs). The samples were collected at Qeqertarsuaq (Godhavn, West Greenland) and Ittoqqortoormiit (Scoresbysund, East Greenland). The concentrations of halogenated organic compounds in samples from East Greenland were somewhat higher than the corresponding concentrations from West Greenland. Differences in compound patterns were found between West and East Greenland, with higher percentages of the heavier PCB molecules, p,p(')-DDE and alpha-HCH in the samples from Ittoqqortoormiit. Similarly, different levels and different compositions were observed for eggs and livers. The eggs had generally higher concentrations of all compounds as well as higher percentages of CHB-50, CHB-62 and alpha-HCH than liver samples from the same area. Dividing the liver samples into age groups revealed increasing concentrations with age.  相似文献   
217.
Composition and exhalation flux of gases from mud volcanoes in Taiwan   总被引:3,自引:0,他引:3  
Many mud volcanoes are distributed along the tectonic sutures in southern Taiwan and can be divided into five zones based on their relative positions in different tectonic domains. Most active mud volcanoes are exhaling methane-dominated gases. Nevertheless, some gases show unusual carbon dioxide-dominated and/or nitrogen-excess compositions. This implies that there are multiple sources for the gas compositions of mud volcanoes in Taiwan.For better understanding the total amount of exhalation gases and its flux, the gas flow and compositions were continuously measured in the interval of two minutes at Chung-lun (CL) bubbling mud pool for a few months. The major compositions of gases exhaling from this site were 75~90% of CO2 and 5~12% of CH4. The amount of gases exhaling from the mud pool can be estimated to be about 1.4 ton/year for CH4 and 28 ton/year for CO2, respectively. The preliminary results of exhaling gas flux from the major vents of representative active mud volcanoes, yielded an estimated total CH4 output of the mud volcanoes in Taiwan of ca. 29 ton/year during quiescent period.  相似文献   
218.
The South Iceland seismic zone is, roughly speaking, situated between two sections of the mid-Atlantic ridge, i.e., the Reykjanes Ridge southwest of Iceland and the Eastern Volcanic Zone on the island. It is a transform zone, where earthquakes are expected to occur on E-W-trending left-lateral shear faults, equivalent to conjugate, N-S-oriented right-lateral, rupture planes. In fact, earthquakes take place on en-échelon N-S-oriented faults, which is indicated by the distribution of main shock intensities, aftershocks as well as by surface fault traces. The stress field continuously generated in the fault zone by opening of the adjacent ridges is computed and superimposed on the stress field changes induced by a series of 13 earthquakes (M 6) between 1706 and 2000. The level of the pre-seismic stress field is analysed as well as the size of the area under high stress. Finally, the post-seismic stress field of June 2000 is analysed, to see where high stresses might have accumulated. The modelling indicates that the rupture planes located on separated parallel N-S-striking zones are dense enough to lead to an area-wide stress release by the series of events. The obtained pre-seismic stress level for most events is high and stable with the exception of situations when several strong shocks occur over a time span of several days, i.e., display typical main shock-aftershock patterns. The size of areas under high stress aside from of the rupture plane, i.e., where no event occurs at the specific time, is of medium to small size.  相似文献   
219.
A space-time envelope of minor seismicity related to major shallow earthquakes is identified from observations of the long-term Precursory Scale Increase () phenomenon, which quantifies the three-stage faulting model of seismogenesis. The envelope, which includes the source area of the major earthquake, is here demarcated for 47 earthquakes from four regions, with tectonic regimes ranging from subduction to continental collision and continental transform. The earthquakes range in magnitude from 5.8 to 8.2, and include the 24 most recent mainshocks of magnitude 6.4 and larger in the San Andreas system of California, the Hellenic Arc region of Greece, and the New Zealand region, together with the six most recent mainshocks of magnitude 7.4 and larger in the Pacific Arc region of Japan. Also included are the destructive earthquakes that occurred at Kobe, Japan (1995, magnitude 7.2), Izmit, Turkey (1999, magnitude 7.4), and W.Tottori, Japan (2000, magnitude 7.3). The space (A P ) in the space-time envelope is optimised with respect to the scale increase, while the time (T P ) is the interval between the onset of the scale increase and the occurrence of the earthquake. A strong correlation is found between the envelope A P T P and the magnitude of the earthquake; hence the conclusion that the set of precursory earthquakes contained in the envelope is intrinsic to the seismogenic process. Yet A P and T P are correlated only weakly with each other, suggesting that A P is affected by differences in statical conditions, such as geological structure and lithology, and T P by differences in dynamical conditions, such as plate velocity. Among other scaling relations, predictive regressions are found between, on the one hand, the magnitude level of the precursory seismicity, and on the other hand, both T P and the major earthquake magnitude. Hence the method, as here applied to retrospective analysis, is potentially adaptable to long-range forecasting of the place, time and magnitude of major earthquakes.  相似文献   
220.
The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite ( REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520–1,500). Calciocarbonatites ( REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95–160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (Nd 1.4–5.4, 87Sr/86 Sr<Bulk Earth) indicate a depleted mantle source for the alkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and represents the only occurrence of carbonatite and kimberlite rocks in the Andes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号