首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   8篇
  国内免费   3篇
大气科学   15篇
地球物理   28篇
地质学   88篇
海洋学   16篇
天文学   36篇
综合类   2篇
自然地理   10篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   9篇
  2014年   8篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   9篇
  2008年   17篇
  2007年   9篇
  2006年   7篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   3篇
  1987年   2篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
31.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   
32.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   
33.
34.
The strong spectral interference between Br‐ and Al‐induced X‐ray lines hampers the utilisation of electron probe microanalysis (EPMA) for measuring Br mass fractions in Al‐bearing minerals and glasses. Through measuring Br‐free Al‐bearing materials, we established an EPMA method to quantify the overlap from AlKα on BrLβ, which can be expressed as a linear function of the Al2O3 content. The count rate of the BrLβ peak signal was enhanced by high beam currents and long measurement times. Application of this EPMA method to Al‐ and Br‐bearing materials, such as sodalite and scapolite, and to five experimental glasses yielded Br mass fractions (in the range of 250–4000 μg g?1) that are consistent with those measured by microbeam synchrotron X‐ray fluorescence (μ‐SXRF) spectrometry. The EPMA method has an estimated detection limit of ~ 100–300 μg g?1. We propose that this method is useful for measuring Br mass fractions (hundreds to thousands of μg g?1) in Al‐bearing minerals and glasses, including those produced in Br‐doped experiments. In addition, the natural marialitic scapolite (ON70) from Mpwapwa (Tanzania) containing homogeneously distributed high mass fractions of Br (2058 ± 56 μg g?1) and Cl (1.98 ± 0.03% m/m) is an ideal reference material for future in situ analyses.  相似文献   
35.
36.
37.
Prior to the collection of a series of sediment cores, a high- and very-high-resolution reflection seismic survey was carried out on Lago Puyehue, Lake District, South-Central Chile. The data reveal a complex bathymetry and basin structure, with three sub-basins separated by bathymetric ridges, bedrock islands and interconnected channels. The sedimentary infill reaches a thickness of >200 m. It can be sub-divided into five seismic-stratigraphic units, which are interpreted as: moraine, ice-contact or outwash deposits (Unit I), glacio-lacustrine sediments rapidly deposited in a proglacial or subglacial lake at the onset of deglaciation (Unit II), lacustrine fan deposits fed by sediment-laden meltwater streams in a proglacial lake (Unit III), distal deposits of fluvially derived sediment in an open, post-glacial lake (Unit IV) and authigenic lacustrine sediments, predominantly of biogenic origin, that accumulated in an open, post-glacial lake (Unit V). This facies succession is very similar to that observed in other glacial lakes, and minor differences are attributed to an overall higher depositional energy and higher terrigenous input caused by the strong seismic and volcanic activity in the region combined with heavy precipitation. A long sediment core (PU-II core) penetrates part of Unit V and its base is dated as 17,915 cal. yr. BP. Extrapolation of average sedimentation rates yields an age of ca. 24,750 cal. yr. BP for the base of Unit V, and of ca. 28,000 cal. yr. BP for the base of Unit IV or for the onset of open-water conditions. This is in contrast with previous glacial-history reconstructions based on terrestrial records, which date the complete deglaciation of the basin as ca. 14,600 cal. yr. BP. This discrepancy cannot be easily explained and highlights the need for more lacustrine records from this region. This is the second in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   
38.
Changes in magmatic assemblages and crystal stability as a response of CO2-flushing in basaltic systems have rarely been directly addressed experimentally, making the role of CO2 in magma dynamics still controversial and object of scientific debate. We conducted a series of experiments to understand the response of magmas from Etna volcano to CO2 flushing. We performed a first experiment at 300 MPa to synthesize a starting material composed of crystals of some hundreds of µm and melt pools. This material is representative of an initial magmatic assemblage composed of plagioclase, clinopyroxene and a water-undersaturated melt with 1.6 wt% H2O. In a second step, the initial assemblage was equilibrated at 300 and 100 MPa with fluids having different XCO 2 fl (CO2/(H2O + CO2)). At low XCO 2 fl (< 0.2 to 0.4), plagioclase is completely dissolved and clinopyroxene show dissolution textures. For relatively high XCO 2 fl (0.9 at 300 MPa), the flushing of a CO2-rich fluid phase leads to an increase of the amount of clinopyroxene and a decrease of the abundance of plagioclase at 300 MPa. This decrease of plagioclase proportion is associated with a change in An content. Our experiments demonstrate that flushing basaltic systems with fluids may drastically affect crystal textures and phase equilibria depending on proportions of H2O and CO2 in the fluid phase. Since texture and crystal proportions are among the most important parameters governing the rheology of magmas, fluid flushing will also influence magma ascent to the Earth’s surface. The experimental results open new perspectives to decipher the textural and compositional record of minerals observed in volcanic rocks from Mt. Etna, and at the same time offer the basis for interpreting the information preserved in minerals from other basaltic volcanoes erupting magmas enriched in CO2.  相似文献   
39.
Mafic enclaves in the 1991–1995 dacite of Unzen volcano show chemical and textural variability, such as bulk SiO2 contents ranging from 52 to 62 wt% and fine- to coarse-grained microlite textures. In this paper, we investigated the mineral chemistry of plagioclase and hornblende microlites and distinguished three enclave types. Type-I mafic enclaves contain high-Mg plagioclase and low-Cl hornblende as microlites, whereas type-III enclaves include low-Mg plagioclase and high-Cl hornblende. Type-II enclaves have an intermediate mineral chemistry. Type-I mafic enclaves tend to show a finer-grained matrix, have slightly higher bulk rock SiO2 contents (56–60 wt%) when compared with the type-III mafic enclaves (SiO2?=?53–59 wt%), but the overall bulk enclave compositions are within the trend of the basalt–dacite eruptive products of Quaternary monogenetic volcanoes around Unzen volcano. The origin of the variation of mineral chemistry in mafic enclaves is interpreted to reflect different degree of diffusion-controlled re-equilibration of minerals in a low-temperature mushy dacitic magma reservoir. Mafic enclaves with a long residence time in the dacitic magma reservoir, whose constituent minerals were annealed at low-temperature to be in equililbrium with the rhyolitic melt, represent type-III enclaves. In contrast, type-I mafic enclaves result from recent mafic injections with a mineral assemblage that still retains the high-temperature mineral chemistry. Taking temperature, Ca/(Ca?+?Na) ratio of plagioclase, and water activity of the hydrous Unzen magma into account, the Mg contents of plagioclase indicate that plagioclase microlites in type-III enclaves initially crystallized at high temperature and were subsequently re-equilibrated at low-temperature conditions. Compositional profiles of Mg in plagioclase suggest that older mafic enclaves (Type-III) had a residence time of ~100 years at 800 °C in a stagnant magma reservoir before their incorporation into the mixed dacite of the 1991–1995 Unzen eruption. Presence of different types of mafic enclaves suggests that the 1991–1995 dacite of Unzen volcano tapped mushy magma reservoir intermittently replenished by high-temperature mafic magmas.  相似文献   
40.
Natural Hazards - In November 2015, China government announced that the national carbon emissions trading market is expected to start in 2017. Carbon emission trading system is a raising concern...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号