首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   55篇
  国内免费   4篇
测绘学   24篇
大气科学   74篇
地球物理   245篇
地质学   278篇
海洋学   111篇
天文学   59篇
综合类   6篇
自然地理   76篇
  2023年   4篇
  2022年   7篇
  2021年   17篇
  2020年   24篇
  2019年   19篇
  2018年   33篇
  2017年   31篇
  2016年   71篇
  2015年   44篇
  2014年   43篇
  2013年   50篇
  2012年   37篇
  2011年   61篇
  2010年   48篇
  2009年   51篇
  2008年   42篇
  2007年   43篇
  2006年   46篇
  2005年   20篇
  2004年   25篇
  2003年   18篇
  2002年   23篇
  2001年   11篇
  2000年   10篇
  1999年   17篇
  1998年   10篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有873条查询结果,搜索用时 31 毫秒
41.
Recently, a new method has been introduced for the estimation of photosynthetic oxygen production from the triple isotope composition (δ17O and δ18O) of dissolved O2 in the ocean and of air O2 in ice cores. This method is based on the deviations (17Δ) from mass dependent respiratory fractionation, the major process affecting the isotopic composition of air O2. To apply this method, the slope in the 17O/16O vs. 18O/16O relationship used for 17Δ calculation must be known with high accuracy. Using numerical simulations and closed system experiments, we show how the respiratory slope is manifested in the 17Δ of O2 in situations where respiration is the only process affecting oxygen isotopic composition (kinetic slope), and in systems in steady state between photosynthesis and respiration (steady state slope). The slopes of the fractionation line in these two cases are different, and the reasons of this phenomenon are discussed. To determine the kinetic respiratory slope for the dominant O2 consumers in aquatic systems, we have conducted new experiments using a wide range of organisms and conditions and obtained one universal value (0.5179 ± 0.0006) in ln(δ17O + 1) vs. ln(δ18O + 1) plots. It was also shown that the respiratory fractionations under light and dark are identical within experimental error. We discuss various marine situations and conclude that the kinetic slope 0.518 should be used for calculating 17Δ of dissolved O2. In contrast, a steady state fractionation slope should be used in global mass balance calculations of triple isotope ratios of O2 in air records of ice cores.  相似文献   
42.
43.
For two decades, the nature of Fe‐rich, oxygen‐bearing, Ru–Os compounds found in the supergene environment has been debated. Ru–Os–Fe‐oxides and nano‐intergrowths of ruthenium with magnetite have been proposed. We applied FE‐SEM, EMPA, μ‐Raman spectroscopy and synchrotron tts‐μXRD to Ru–Os–Fe compounds recovered from Ni‐laterites from the Dominican Republic. The results demonstrate that a significant portion of Fe exists in a common structure with the Ru–Os alloy, that is, ruthenian hexaferrum. This mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe‐oxide(s). Our data suggest that supergene ruthenian hexaferrum with a (Ru0.4(Os,Ir)0.1Fe0.5)?1.0 stoichiometry represents the most advanced weathering product of primary laurite within Ni‐laterites from the Dominican Republic.  相似文献   
44.
45.
Native bismuth in the form of metallic melt has been considered instrumental to the formation of some metallic ore deposits via a mechanism dubbed the “Liquid Bismuth Collector Model.” Here, we provide petrographical documentation of trail‐forming, μm‐sized blebs of native bismuth in cassiterite–quartz veins from the Santa Bárbara greisen Sn deposit in the Rondônia tin province of northern Brazil. These inclusions suggest the trapping of a Bi melt that took place during vein formation, in a mechanism similar to the entrapment of fluid inclusions.  相似文献   
46.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
47.
Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated using laser ablation – inductively coupled plasma – mass spectrometry. The U–Pb ages obtained were used for comparison with previous radiometric data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast. New U–Pb dating of igneous morphologically simple and complex zircons from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in Holocene sand revealed a wide interval, ranging from the Cretaceous to the Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and Neoproterozoic (19%) detrital‐zircon ages. The paucity of round to sub‐rounded grains seems to indicate a short transportation history for most of the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the beach sand that was sampled south of Cape Sines. Comparative analysis using the Kolmogorov–Smirnov statistical method, analysing sub‐populations separately, suggests that the zircon populations of the Carboniferous and Cretaceous rocks forming the sea cliff were reproduced faithfully in Quaternary sand, indicating sediment recycling. The similarity of the pre‐Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (<ca 95 Ma) found in Holocene sand, as compared with Pliocene–Pleistocene sand (secondary recycled source), suggests that the Sines pluton was the one of the primary sources that became progressively more exposed to erosion during Quaternary uplift. This work highlights the application of the Kolmogorov–Smirnov method in comparison of zircon age populations used to identify provenance and sediment recycling in modern and ancient detrital sedimentary sequences.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号