首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   6篇
测绘学   1篇
大气科学   11篇
地球物理   26篇
地质学   65篇
海洋学   5篇
天文学   5篇
自然地理   2篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   11篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1988年   2篇
  1984年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有115条查询结果,搜索用时 46 毫秒
81.
We discuss scalar similarities and dissimilarities based on analysis of the dissipation terms in the variance budget equations, considering the turbulent kinetic energy and the variances of temperature, specific humidity and specific CO\(_2\) content. For this purpose, 124 high-frequency sampled segments are selected from the Boundary Layer Late Afternoon and Sunset Turbulence experiment. The consequences of dissipation similarity in the variance transport are also discussed and quantified. The results show that, for the convective atmospheric surface layer, the non-dimensional dissipation terms can be expressed in the framework of Monin–Obukhov similarity theory and are independent of whether the variable is temperature or moisture. The scalar similarity in the dissipation term implies that the characteristic scales of the atmospheric surface layer can be estimated from the respective rate of variance dissipation, the characteristic scale of temperature, and the dissipation rate of temperature variance.  相似文献   
82.
The objective of this study was to analyze climate change impacts on irrigation water demand and availability in the Jaguaribe River basin, Brazil. For northeastern Brazil, five global circulation models were selected using a rainfall seasonal evaluation screening technique from the Intergovernmental Panel on Climate Change named Coupled Model Intercomparison Project Phase 5. The climate variables were generated for the base period of 1971–2000, as were projections for the 2025–2055 future time slice. Removal of maximum and minimum temperature and rainfall output bias was used to estimate reference evapotranspiration, irrigation water needs, and river flow using the rainfall—river flow hydrological model Soil Moisture Accounting Procedure for the baseline and future climate (Representative Concentration Pathways 4.5 and 8.5 scenarios). In addition, by applying improved irrigation efficiency, a scenario was evaluated in comparison with field observed performance. The water-deficit index was used as a water availability performance indicator. Future climate projections by all five models resulted in increases in future reference evapotranspiration (2.3–6.3%) and irrigation water needs (2.8–16.7%) for all scenarios. Regarding rainfall projections, both positive (4.8–12.5%) and negative (??2.3 to ??15.2%) signals were observed. Most models and scenarios project that annual river flow will decrease. Lower future water availability was detected by the less positive water-deficit index. Improved irrigation efficiency is a key measure for the adaptation to higher future levels of water demand, as climate change impacts could be compensated by gains in irrigation efficiency (water demand changes varying from ??1.7 to ??35.2%).  相似文献   
83.
High-voltage transmission networks represent a large electrical circuit just above the ground subjected to a number of transient overcharges of various kinds, some of which may lead to failures. Some failures might be related to anomalies of the geophysical environment. We have analyzed one unprecedented long series of transmission grid failures (9?years) on high-voltage networks located in S?o Paulo state, southeastern Brazil, from 1998 to 2006, which includes an important fraction of the past solar activity cycle 23. Ninety-five distinct failure causes were given by the power line operator to explain the transmission grid shut downs. Most failures were attributed to atmospheric discharges, corresponding to 1,957 failures out of a total of 4,572 for the whole period at 138?kV, and 170 out of 763 at 440?kV, respectively. They correspond to less than one ten thousandth of the actual number of atmospheric discharges recorded in the same area, demonstrating the grid’s high resilience to breakdowns due to lightning. A clear concentration of failures in the region’s thunderstorm season has been found. A significant 67 and 77?% reduction in the number of failure rates per year has been found for the 138 and 440?kV grids, respectively, for the period studied, in good correspondence with the decay in the sunspot numbers. No obvious correlation was found between power failures and the planetary index of geomagnetic activity or major geomagnetic storms in the period, either on short or on long time scales. Assuming that the dependence of the electrosphere/ionosphere-ground coupling on the external geophysical environment plays a major role in explaining the reduction in power failures as the solar cycle wanes, it is suggested that the increase in atmosphere conductivity caused by the larger cosmic ray flux then reduces the threshold voltage required to produce lightning strokes, so reducing their effectiveness in disrupting high-voltage power lines.  相似文献   
84.
Mainstem–floodplain material exchange in the tidal freshwater reach of major rivers may lead to significant sequestration of riverine sediment, but this zone remains understudied compared to adjacent fluvial and marine environments. This knowledge gap prompts investigation of floodplain-incising tidal channels found along the banks of tidal rivers and their role in facilitating water and suspended-sediment fluxes between mainstem and floodplain. To evaluate this role, and how it evolves along the tidal river and with time, we measured water level, flow velocity, temperature, and suspended-sediment concentration (SSC) in four tidal channels along the tidal Amazon River, Brazil. Eleven deployments were made during low, rising, high, and falling seasonal Amazon discharge. Generally, channels export high-SSC water from the mainstem to the tidal floodplain on flood tides and transfer low-SSC water back to the mainstem on ebbs. Along the length of the tidal river, the interaction between tidal and seasonal water-level variations and channel–floodplain morphology is a primary control on tidal-channel sediment dynamics. Close to the river mouth, where tides are large, this interaction produces transient flow features and current-induced sediment resuspension, but the importance of these processes decreases with distance upstream. Although the magnitude of the exchange of water and sediment between mainstem and floodplain via tidal channels is a small percentage of the total mainstem discharge in this large tidal-river system, tidal channels are important conduits for material flux between these two environments. This flux is critical to resisting floodplain submergence during times of rising sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   
85.
Sand storage dams are hydraulic retention structures that increase the volume of coarse sediments in seasonal sandy streams by exclusively blocking the bedload transport during runoff events. However,siltation of fine grain particles, which are transported as part of the suspended load, is a major factor causing sand storage dams to perform poorly. Therefore, this study aimed to evaluate the hydrological performance and cost-efficiency of 30 sand storage dams. This study also aimed to increase the understanding of critical factors which may affect the performance and lead to siltation of sand storage reservoirs. The analysis was based on a physical survey of 30 sand storage dams that were built in onestage in southeastern Kenya. Most of the study sites had the capacity to produce sand. However, the reservoirs suffered from severe siltation, which caused generalized low annual yields, reduced supply capacities, and low cost-efficiency. It is argued that the main factors for the poor performance were the high inter-and intra-annual variability of bedload transport, which coupled with the construction of onestage spillways, led to siltation of the reservoirs. Thus, large volumes of fine grain particles accumulated in the reservoirs during runoff events with bedload layer heights lower than the height of the one-stage spillways. To systematically maximize the robustness to the inherent variability of bedload transport, and ensure optimal performance levels by systematically minimizing siltation, spillways should be built in stages of reduced height. Thus, the lower the stage height, the higher the probability of maximizing the accumulation of coarse sediment. It is estimated that a multi-stage construction process with stage heights of 20 cm would have produced a performance 26 times higher. This implies that the 30 reservoirs would have had the capacity to supply 8516 people as compared to the current supply capacity of 330 people. Improvements in the performance of sand storage dams can greatly assist attempts to link this technology with income-generating activities for agropastoralists in arid and semi-arid areas.  相似文献   
86.
Natural Hazards - Tailings dams are civil structures that have an intrinsic potential risk of failure that, if poorly managed or neglected, can lead to severe societal, environmental, and economic...  相似文献   
87.
Cave bears (Ursus spelaeus) are an iconic component of the European late Quaternary Ice Age megafauna. Recent demographic analyses based on cave bear mtDNA sequences and refined radiocarbon dating indicate that cave bear population size and genetic diversity started to decline some 50 kilo years ago (kya). Hence, neither the coldest phase of the last glaciation (started some 24 kya), nor the colonization of Europe by Palaeolithic hunters (started some 45 kya) coincides with the beginning of population decline. Here, we reconstructed cave bear climatic niche evolution through time. Then, we performed spatially explicit population viability analyses to assess cave bear demographics through time in response to climatic changes, human effects on bear survival and their combination. We found that climate change was responsible for a 10‐fold decrease in cave bear population size after 40 kya. However, climate change on its own could not explain U. spelaeus extinction at 24 kya. Additional negative effects consistent with human population expansion are required to explain both U. spelaeus' retreat from eastern Europe since 40 kya and its final extinction.  相似文献   
88.
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines.FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases.There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water chemistry over short distances, reflecting the interaction of acid ground waters with neutral to alkaline lake waters derived from ponded surface runoff. Meridiani Planum observations indicate that such lateral variations are much less pronounced, pointing to the dominant influence of ground water chemistry, vertical ground water movements, and aeolian processes on the Martian surface mineralogy.  相似文献   
89.
This work describes the tropical town energy budget (t-TEB) scheme addressed to simulate the diurnal occurrence of the urban heat island (UHI) as observed in the Metropolitan Area of Rio de Janeiro (MARJ; ?22° S; ?44° W) in Brazil. Reasoning about the tropical urban climate have guided the scheme implementation, starting from the original equations from Masson (Bound-Lay Meteorol 94:357–397, 2000). The modifications include (a) local scaling approaches for obtaining flux–gradient relationships in the roughness sub-layer, (b) the Monin-Obukhov similarity framework in the inertial sub-layer, (c) increasing aerodynamic conductance toward more unstable conditions, and (d) a modified urban subsurface drainage system to transfer the intercepted rainwater by roofs to the roads. Simulations along 2007 for the MARJ are obtained and compared with the climatology. The t-TEB simulation is consistent with the observations, suggesting that the timing and dynamics of the UHI in tropical cities could vary significantly from the familiar patterns observed in mid-latitude cities—with the peak heat island intensity occurring in the morning than at night. The simulations are suggesting that the thermal phase shift of this tropical diurnal UHI is a response of the surface energy budget to the large amount of solar radiation, intense evapotranspiration, and thermal response of the vegetated surfaces over a very humid soil layer.  相似文献   
90.
The “Americano do Brasil” Complex (ABC) is part of a cluster of coeval synorogenic mafic–ultramafic intrusions emplaced during the Brasiliano/Pan-African Orogenic Cycle in Brazil. The medium-sized ABC consists of interlayered dunite, peridotite, websterite, and gabbronorite. High Fo values of olivine (up to Fo88) and the crystallization sequence of the ABC (Ol + Chr ≥ Ol + Opx + Chr ≥ Cpx + Opx ≥ Opx + Pl + Cpx ≥ Opx + Pl + Cpx + Ilm + Mag) suggest crystallization from tholeiitic high-MgO parental magmas. Light rare earth element (REE)-enriched mantle-normalized REE profiles and εNd(T) values of +2.4 for cumulate rocks from the ABC suggest a depleted mantle source for the parental magma. The ABC Ni–Cu sulfide deposit (3.1 Mt at 1.12 wt.% Ni and 1.02 wt.% Cu) consists of three distinctively different orebodies (S1, S2, and G2). The S2 orebody, an unusual occurrence of stratiform massive sulfide hosted by dunite and peridotite in the interior of a layered intrusion, results from sulfides accumulated at the transient base of the magma chamber following a new influx of parental magma. The G2 orebody has an irregular and roughly cylindrical shape, consisting mainly of net-textured sulfides. The G2 orebody is hosted by peridotite and pyroxenite and located stratigraphically below the S1 orebody. S2 and G2 orebodies are characterized by low Cu/Cu + Ni ratios (mainly below 0.4). The S1 orebody, hosted by websterite and gabbronorite in the more fractionated sequence of the ABC, is a cluster of several irregular discontinuous orebodies of Ni–Cu disseminated sulfides. The sulfides of the S1 orebody have high Cu/Cu + Ni ratios (mainly between 0.5 and 0.8) and are highly depleted in PGE. The S1 orebody is interpreted to result from a later event of sulfide segregation in the magma chamber, possibly following the event that originated the G2 orebody. The bulk of δ34S values for sulfides of the ABC orebodies and their host rocks fall in the range of 0 ± 2‰. Higher δ34S values (between 3‰ and 5‰) are restricted to pyrite from xenoliths of gneiss located close to the S1 orebody and sulfides from the S1 orebody. Crustal xenoliths and chemical data (lithogeochemistry and sulfur isotope composition) provide evidence of crustal contamination of the igneous rocks hosting the S1 orebody, suggesting that sulfur saturation was induced by contamination with sulfide-bearing crustal rocks. The ABC deposit is an example of Ni–Cu sulfide mineralization hosted by synorogenic mafic–ultramafic intrusions. The S2 orebody is the first documented example of an economic stratiform massive sulfide orebody located within layered intrusions, expanding the opportunities for exploration of Ni–Cu sulfides in orogenic regions worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号