首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104362篇
  免费   1744篇
  国内免费   708篇
测绘学   2573篇
大气科学   7991篇
地球物理   20702篇
地质学   37975篇
海洋学   8593篇
天文学   22315篇
综合类   310篇
自然地理   6355篇
  2020年   637篇
  2019年   659篇
  2018年   4023篇
  2017年   3836篇
  2016年   3213篇
  2015年   1401篇
  2014年   1844篇
  2013年   4106篇
  2012年   2996篇
  2011年   5398篇
  2010年   4926篇
  2009年   6064篇
  2008年   5116篇
  2007年   5468篇
  2006年   3137篇
  2005年   3134篇
  2004年   3109篇
  2003年   2957篇
  2002年   2631篇
  2001年   2237篇
  2000年   2171篇
  1999年   1876篇
  1998年   1879篇
  1997年   1829篇
  1996年   1561篇
  1995年   1474篇
  1994年   1332篇
  1993年   1215篇
  1992年   1160篇
  1991年   1006篇
  1990年   1203篇
  1989年   1048篇
  1988年   912篇
  1987年   1141篇
  1986年   1006篇
  1985年   1267篇
  1984年   1467篇
  1983年   1395篇
  1982年   1249篇
  1981年   1217篇
  1980年   1070篇
  1979年   1032篇
  1978年   1096篇
  1977年   990篇
  1976年   962篇
  1975年   906篇
  1974年   880篇
  1973年   893篇
  1972年   565篇
  1971年   500篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
711.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
712.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   
713.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   
714.
The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50–83.15%, whereas the inertinite content varies from 14.93–36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75 MPa and 22.94 to 26.88 m3/t (Std. daf), respectively.  相似文献   
715.
Identifying a good site for groundwater exploration in hard rock terrain is a challenging task. In hard rocks, groundwater occurs in secondary porosity developed due to weathering, fracturing, faulting, etc., which is highly variable within short distance and contributing to near-surface inhomogeneity. In such situations topographic, hydrogeological and geomorphological features provide useful clues for the selection of suitable sites. Initially, based on satellite imagery, topographical, geomorphological and hydrogeological features, an area of about 149 km2 was demarcated as a promising zone for groundwater exploration in the hard rock tract of Seethanagaram Mandal, Vizianagaram District, Andhra Pradesh, India. A total of 50 Vertical Electrical Soundings (VES) were carried out using Wenner electrode configuration. An interactive interpretation of the VES data sharpened the information inferred from geomorphological and hydrogeological reconnaissance. Ten sites were recommended for drilling. Drilling with Down-The-Hole Hammer (DTH) was carried out at the recommended sites down to 50 to 70 m depths. The interpreted VES results matched well with the drilled bore well lithologs. The yields of bore wells vary from 900 to 9000 liters per hour (lph).  相似文献   
716.
Chennai city suffered moderate tremors during the 2001 Bhuj and Pondicherry earthquakes and the 2004 Sumatra earthquake. After the Bhuj earthquake, Indian Standard IS: 1893 was revised and Chennai city was upgraded from zone II to zone III which leads to a substantial increase of the design ground motion parameters. Therefore, a comprehensive study is carried out to assess the seismic hazard of Chennai city based on a deterministic approach. The seismicity and seismotectonic details within a 100 km radius of the study area have been considered. The one-dimensional ground response analysis was carried out for 38 representative sites by the equivalent linear method using the SHAKE91 program to estimate the ground motion parameters considering the local site effects. The shear wave velocity profile was inferred from the corrected blow counts and it was verified with the Multichannel Analysis of Surface Wave (MASW) test performed for a representative site. The seismic hazard is represented in terms of characteristic site period and Spectral Acceleration Ratio (SAR) contours for the entire city. It is found that structures with low natural period undergo significant amplification mostly in the central and southern parts of Chennai city due to the presence of deep soil sites with clayey or sandy deposits and the remaining parts undergo marginal amplification.  相似文献   
717.
This paper presents the development of spectral hazard maps for Sumatra and Java islands, Indonesia and microzonation study for Jakarta city. The purpose of this study is to propose a revision of the seismic hazard map in Indonesian Seismic Code SNI 03-1726-2002. Some improvements in seismic hazard analysis were implemented in the analysis by considering the recent seismic activities around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) seismic source models (fault source model) using the latest research works regarding the tectonic setting of Sumatra and Java. Two hazard levels were analysed for representing 10% and 2% probability of exceedance (PE) in 50 years ground motions for Sumatra and Java. Peak ground acceleration contour maps for those two hazard levels and two additional macrozonation maps for 10% PE in 50 years were produced during this research. These two additional maps represent short period (0.2 s) and long-period (1.0 s) spectra values at the bedrock. Microzonation study is performed in order to obtain ground motion parameters such as acceleration, amplification factor and response spectra at the surface of Jakarta. The analyses were carried out using nonlinear approach. The results were used to develop contour of acceleration at the surface of Jakarta. Finally, the design response spectra for structural design purposes are proposed in this study.  相似文献   
718.
The summer monsoon season of the year 2006 was highlighted by an unprecedented number of monsoon lows over the central and the western parts of India, particularly giving widespread rainfall over Gujarat and Rajasthan. Ahmedabad had received 540.2mm of rainfall in the month of August 2006 against the climatological mean of 219.8mm. The two spells of very heavy rainfall of 108.4mm and 97.7mm were recorded on 8 and 12 August 2006 respectively. Due to meteorological complexities involved in replicating the rainfall occurrences over a region, the Weather Research and Forecast (WRF-ARW version) modeling system with two different cumulus schemes in a nested configuration is chosen for simulating these events. The spatial distributions of large-scale circulation and moisture fields have been simulated reasonably well in this model, though there are some spatial biases in the simulated rainfall pattern. The rainfall amount over Ahmedabad has been underestimated by both the cumulus parameterization schemes. The quantitative validation of the simulated rainfall is done by calculating the categorical skill scores like frequency bias, threat scores (TS) and equitable threat scores (ETS). In this case the KF scheme has outperformed the GD scheme for the low precipitation threshold.  相似文献   
719.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
720.
The Kalak Nappe Complex (KNC) has been regarded as Baltica passive margin metasediments telescoped eastwards onto the Baltic (Fennoscandian) Shield during the Caledonian Orogeny. Recent studies have questioned this interpretation, instead pointing to a Neoproterozoic exotic origin. In an effort to resolve this controversy we present a Sm–Nd and U–Th–Pb study of gnessic units, traditionally considered as the depositional basement, along with cover rock sediments and intrusives. Late Palaeoproterozoic gneisses now beneath the KNC were deposited after 1948 ± 33 Ma, before intrusion of the Tjukkfjellet Granite at 1796 ± 3 Ma, and were affected by later melting events at 1765 ± 9 and 1727 ± 9 Ma. These gneisses are interpreted as part of the Baltic Shield and underlie the KNC across a tectonic contact. An unconformity between psammites of the KNC and other paragneisses previously considered as its Precambrian basement is reinterpreted as a modified sedimentary contact between Neoproterozoic metasediments. These metasediments have statistically very similar detrital zircon populations with grains as young as 1034 ± 22, 1025 ± 32 and 1014 ± 14 Ma. The results indicate that the KNC sediments were deposited during the Neoproterozoic in basins along the Laurentian margin of eastern Rodinia and were not connected to Baltica via a depositional basement. Dating of the 851 ± 5 Ma Eidvågvatnet and 853 ± 4 Ma Nordneset granites shows that intrusive material associated with the Porsanger Orogeny (c. 850 Ma) affected a considerable region of the upper KNC terrane. Later Neoproterozoic events at 711 ± 6, 687 ± 12 and 617 ± 6 Ma are also recognised the latest of which may be an expression of rifting. Since early Neoproterozoic magmatism (c. 840–690 Ma) is unknown in Baltica, these results support an exotic origin for the KNC terranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号