首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
地球物理   7篇
地质学   11篇
海洋学   1篇
自然地理   16篇
  2021年   2篇
  2018年   3篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2007年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
Clinopyroxene composition in mafic lavas from different tectonic settings   总被引:18,自引:0,他引:18  
Many metamorphosed and weathered basalts contain fresh clinopyroxene crystals set in an altered groundmass. Microprobe analysis of these relict grains can be used to identify the magma type of the host lava. Statistical discrimination of clinopyroxenes from known magma types provides a test of the effectiveness of this method, showing that any attempt to classify an unknown clinopyroxene as either an ocean-floor basalt, a volcanic arc basalt, a within plate tholeiite or a within plate alkali basalt magma type should have a 70% chance of success. Identification of within plate alkali basalts is most likely to be successful because their pyroxenes characteristically have high Na and Ti and low Si contents. Within plate tholeiites can usually be distinguished from volcanic arc basalts because their pyroxenes contain more Ti, Fe and Mn. However, neither of these last two magma types can be easily distinguished from ocean floor basalts on the basis of pyroxene analyses. Diagrams of pyroxene composition based on discriminant functions and on Na2O vs MnO vs TiO2, SiO2 vs TiO2 and SiO2 vs Al2O3 provide the basis for visual discrimination. The discrimination achieved is mainly due to differences in the bulk chemistry of the host magmas and in the partitioning of cations into the pyroxene lattice; differences in temperature and crystallization histroy of the magmas are of lesser, but nevertheless finite, importance. Application of this technique to pyroxenes in metabasalts from Othris, Greece gave results consistent with, but more ambiguous than, results obtained from immobile trace element studies.  相似文献   
32.
Mixed siliciclastic‐carbonate deep‐marine systems (mixed systems) are less documented in the geological record than pure siliciclastic systems. The similarities and differences between these systems are, therefore, poorly understood. A well‐exposed Late Cretaceous mixed system on the northern side of the Eastern Greater Caucasus, Azerbaijan, provides an opportunity to study the interaction between contemporaneous siliciclastic and carbonate deep‐marine deposition. Facies analysis reveals a Cenomanian–early Turonian siliciclastic submarine channel complex that abruptly transitions into a Mid Turonian–Maastrichtian mixed lobe‐dominated succession. The channels are entrenched in lows on the palaeo‐seafloor but are absent 10 km towards the west where an Early Cretaceous submarine landslide complex acted as a topographic barrier to deposition. By the Campanian, this topography was largely healed allowing extensive deposition of the mixed lobe‐dominated succession. Evidence for irregular bathymetry is recorded by opposing palaeoflow indicators and frequent submarine landslides. The overall sequence is interpreted to represent the abrupt transition from Cenomanian–early Turonian siliciclastic progradation to c. Mid Turonian retrogradation, followed by a gradual return to progradation in the Santonian–Maastrichtian. The siliciclastic systems periodically punctuate a more widely extensive calcareous system from the Mid Turonian onwards, resulting in a mixed deep‐marine system. Mixed lobes differ from their siliciclastic counterparts in that they contain both siliciclastic and calcareous depositional elements making determining distal and proximal environments challenging using conventional terminology and complicate palaeogeographic interpretations. Modulation and remobilisation also occur between the two contemporaneous systems making stacking patterns difficult to decipher. The results provide insight into the behaviour of multiple contemporaneous deep‐marine fans, an aspect that is challenging to decipher in non‐mixed systems. The study area is comparable in terms of facies, architectures and the presence of widespread instability to offshore The Gambia, NW Africa, and could form a suitable analogue for mixed deep‐marine systems observed elsewhere.  相似文献   
33.
34.
Complexities in the nature of large-scale silicic eruptions and their magmatic systems can be discerned through micro-analytical geochemical studies. We present high-resolution, stratigraphically constrained compositional data on glassy matrix material and feldspar crystals from the initial fall deposits and earliest ignimbrite (base of member A) of the 2.08 Ma, ~?2500 km3 Huckleberry Ridge Tuff (HRT), Yellowstone. We use these data to document the nature of the magmatic system and compositional changes related to the transition from fall to widespread ignimbrite deposition, inferred to mark the onset of caldera collapse. Although major element glass compositions are relatively uniform, trace elements span a large range (e.g. Ba 10–900 ppm, Sr/Rb?=?0.005–0.09), with highly evolved glasses dominating in the fall deposits. Several trace elements (e.g. Ba and light rare earth elements) in the glass samples serve to define statistically significant compositional clustering in the fall deposits and basal ignimbrite. These clusters are inferred to reflect melt compositions controlled by fractional crystallisation processes and are interpreted to represent multiple, discrete melt-dominant domains that were tapped by multiple vents. The onset of widespread ignimbrite deposition is marked by an increase in the number of erupted melt compositional clusters from four in the fall deposits to eight, representing nine melt-dominant domains. There is an absence of geographical variation of glass compositions within the basal ignimbrite, with samples from proximal to distal localities north, west and south of the HRT caldera exhibiting similar variability. Pairing of glass analyses with sanidine major and minor element compositional data suggests that the nine melt compositional domains converged at depth into two compositionally distinct upper-crustal magmatic lineages that were both active during these early stages of the eruption. Our data collectively indicate the evacuation of an exceptionally complex and heterogeneous magma system. The onset of widespread ignimbrite deposition, inferred to relate to caldera collapse, occurred after ~ 50 km3 of magma had been discharged. Although external controls were important as an eruption trigger, depressurisation of the system led to caldera collapse with the eruption of numerous discrete melt-dominant domains.  相似文献   
35.
The distribution, abundance and composition of marine fish assemblages are influenced by changes in behaviour and movement associated with the diel cycle. The majority of studies exploring day–night differences have demonstrated that there is a greater abundance and diversity of fishes during diurnal compared with nocturnal hours, and that fish assemblage composition varies with time of day or night. We investigated fine‐scale (hourly) diel cycles in the composition and relative abundance of temperate reef fishes using unbaited remote underwater video systems. We observed short crepuscular changeover periods with the hours around dawn and dusk sharing many species, some of which are nocturnal and others diurnal. Diurnal surveys recorded a greater number of individuals (16,990) and species (70) than nocturnal surveys (1053 individuals and 19 species). There was a clear difference between the diurnal assemblage, which was characterized by benthic invertivores, and the nocturnal assemblage composition, which contained zooplanktivores and generalist feeders. Within the diurnal period the hourly temporal variation was relatively homogenous, indicating that standardization of diurnal sampling to a particular time of day may not be necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号