首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
测绘学   1篇
大气科学   1篇
地球物理   14篇
地质学   20篇
海洋学   1篇
天文学   4篇
自然地理   4篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1984年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
11.
Proxies, such as changes in beach profiles and shoreline positions, are commonly used in management and research for estimating changes in subaerial beach volume; however, the accuracy of these proxies across increasing time scales and complex morphologies is unclear. Volume changes associated with along‐beach morphologic variability may not be captured well by changes in profiles, while volume changes associated with across‐beach morphologic variability may not be captured well by measuring shoreline change. This study assesses the impacts of morphologic variations, associated with beach cusps and nourishment material, on volume change estimates from profiles and shoreline change at 0.5 to 3.5 year time periods. Results indicate that profiles spaced ≥ 150 m apart and the shoreline‐change proxy will likely estimate volume change inaccurately over periods ≤ 1 year at beaches that are consistently eroding or accreting and contain cusps. However, over longer time periods (1–3.5 years), estimates of volume change from both proxies improved at those types of beaches. Volume changes at the edges of nourishment areas are not captured well by profiles. When the nourishment material is graded to a ramped morphology, which minimizes across‐beach morphologic variability, the shoreline‐change proxy does accurately estimate volume changes. Both proxies estimate volume changes inaccurately at beaches where volume changes oscillate between erosion and accretion on both short and long time scales because the magnitude of small‐scale changes in volume from the formation and erosion of morphologic features, such as cusps and berms, will always be similar to the longer‐term net volume change. This study suggests that decadal records of shoreline change, which are commonly developed using aerial photography, can be used to help identify the best proxy for estimating volume change; however, recent anthropogenic modifications that impact patterns of beach sedimentation, including nourishment, terminal groins, and inlet‐channel dredging, makes decadal records less useful. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
12.
In this paper, we present the development and application of a two-dimensional, automatic unstructured mesh generator for shallow water models called Admesh. Starting with only target minimum and maximum element sizes and points defining the boundary and bathymetry/ topography of the domain, the goal of the mesh generator is to automatically produce a high-quality mesh from this minimal set of input. From the geometry provided, properties such as local features, curvature of the boundary, bathymetric/topographic gradients, and approximate flow characteristics can be extracted, which are then used to determine local element sizes. The result is a high-quality mesh, with the correct amount of refinement where it is needed to resolve all the geometry and flow characteristics of the domain. Techniques incorporated include the use of the so-called signed distance function, which is used to determine critical geometric properties, the approximation of piecewise linear coastline data by smooth cubic splines, a so-called mesh function used to determine element sizes and control the size ratio of neighboring elements, and a spring-based force equilibrium approach used to improve the element quality of an initial mesh obtained from a simple Delaunay triangulation. Several meshes of shallow water domains created by the new mesh generator are presented.  相似文献   
13.
Discontinuous Galerkin methods for modeling Hurricane storm surge   总被引:1,自引:0,他引:1  
Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability.Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution.The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh (h) and polynomial order (p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method.In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.  相似文献   
14.
15.
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
16.
Geographically isolated wetlands (GIWs) are commonly reported as having hardpan or low hydraulic conductivity units underneath that produce perched groundwater, which can sustain surface water levels independently of regional aquifer fluctuations. Despite the potential of GIW-perched aquifer systems to provide important hydrological and ecological functions such as groundwater storage and native amphibian habitat, little research has studied the hydrologic controls and dynamics of these systems. We compared several ridge-top depressional GIW-perched groundwater systems to investigate the role of watershed morphology on hydroregime and groundwater-surface water interaction. Ridge-top depressional wetlands in the Daniel Boone National Forest, Kentucky were chosen because they offer natural controls such as lack of apparent connection to surface water bodies, similar climate, and similar soils. Three wetlands with different topographic slopes and hillslope structures were mapped to distinguish key geomorphic parameters and monitored to characterize groundwater-surface water interaction. Wetlands with soil hummocks and low upland slopes transitioned from infiltration to groundwater discharge conditions in the spring and during storm events. The magnitude and duration of this transition fell along a continuum, where higher topographic slopes and steeper uplands produced comparably smaller and shorter head reversals. This demonstrates that ridge-top GIW-perched groundwater systems are largely sensitive to the runoff-recharge relationship in the upland area which can produce significant groundwater storage on a small-scale.  相似文献   
17.
An experimental procedure has been developed that permits measurement of the partitioning of Ar and He between crystal interiors and the intergranular medium (ITM) that surrounds them in synthetic melt-free polycrystalline diopside aggregates. 37Ar and 4He are introduced into the samples via neutron irradiation. As samples are crystallized under sub-solidus conditions from a pure diopside glass in a piston cylinder apparatus, noble gases diffusively equilibrate between the evolving crystal and intergranular reservoirs. After equilibration, ITM Ar and He is distinguished from that incorporated within the crystals by means of step heating analysis. An apparent equilibrium state (i.e., constant partitioning) is reached after about 20 h in the 1450 °C experiments. Data for longer durations show a systematic trend of decreasing ITM Ar (and He) with decreasing grain boundary (GB) interfacial area as would be predicted for partitioning controlled by the network of planar grain boundaries (as opposed to ITM gases distributed in discrete micro-bubbles or melt). These data yield values of GB-area-normalized partitioning, , with units of (Ar/m3 of solid)/(Ar/m2 of GB) of 6.8 × 103-2.4 × 104 m−1. Combined petrographic microscope, SEM, and limited TEM observation showed no evidence that a residual glass phase or grain boundary micro-bubbles dominated the ITM, though they may represent minor components. If a nominal GB thickness (δ) is assumed, and if the density of crystals and the grain boundaries are assumed equal, then a true grain boundary partition coefficient , may be determined. For reasonable values of δ, is at least an order of magnitude lower than the Ar partition coefficient between diopside and melt. Helium partitioning data provide a less robust constraint with between 4 × 103 and 4 × 104 cm−1, similar to the Ar partitioning data. These data suggest that an ITM consisting of nominally melt free, bubble free, tight grain boundaries can constitute a significant but not infinite reservoir, and therefore bulk transport pathway, for noble gases in fine grained portions of the crust and mantle where aqueous or melt fluids are non-wetting and of very low abundance (i.e., <0.1% fluid). Heterogeneities in grain size within dry equilibrated systems will correspond to significant differences in bulk rock noble gas content.  相似文献   
18.
This conceptual model of avalanche hazard identifies the key components of avalanche hazard and structures them into a systematic, consistent workflow for hazard and risk assessments. The method is applicable to all types of avalanche forecasting operations, and the underlying principles can be applied at any scale in space or time. The concept of an avalanche problem is introduced, describing how different types of avalanche problems directly influence the assessment and management of the risk. Four sequential questions are shown to structure the assessment of avalanche hazard, namely: (1) What type of avalanche problem(s) exists? (2) Where are these problems located in the terrain? (3) How likely is it that an avalanche will occur? and (4) How big will the avalanche be? Our objective was to develop an underpinning for qualitative hazard and risk assessments and address this knowledge gap in the avalanche forecasting literature. We used judgmental decomposition to elicit the avalanche forecasting process from forecasters and then described it within a risk-based framework that is consistent with other natural hazards disciplines.  相似文献   
19.
Carbon, oxygen and clumped isotope (Δ47) values were measured from lacustrine and tufa (spring)‐mound carbonate deposits in the Lower Jurassic Navajo Sandstone of southern Utah and northern Arizona in order to understand the palaeohydrology. These carbonate deposits are enriched in both 18O and 13C across the basin from east to west; neither isotope is strongly sensitive to the carbonate facies. However, 18O is enriched in lake carbonate deposits compared to the associated spring mounds. This is consistent with evaporation of the spring waters as they exited the mounds and were retained in interdune lakes. Clumped isotopes (Δ47) exhibit minor systematic differences between lake and tufa‐mound temperatures, suggesting that the rate of carbonate formation under ambient conditions was moderate. These clumped isotope values imply palaeotemperature elevated beyond reasonable surface temperatures (54 to 86°C), which indicates limited bond reordering at estimated burial depths of ca 4 to 5 km, consistent with independent estimates of sediment thickness and burial depth gradients across the basin. Although clumped isotopes do not provide surface temperature information in this case, they still provide useful burial information and support interpretations of the evolution of groundwater locally. The findings of this study significantly extend the utility of combining stable isotope and clumped isotope methods into aeolian environments.  相似文献   
20.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号