首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   18篇
  国内免费   5篇
测绘学   31篇
大气科学   62篇
地球物理   146篇
地质学   151篇
海洋学   66篇
天文学   60篇
综合类   2篇
自然地理   58篇
  2022年   7篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   26篇
  2017年   11篇
  2016年   16篇
  2015年   11篇
  2014年   27篇
  2013年   33篇
  2012年   23篇
  2011年   31篇
  2010年   33篇
  2009年   41篇
  2008年   34篇
  2007年   31篇
  2006年   15篇
  2005年   17篇
  2004年   19篇
  2003年   13篇
  2002年   17篇
  2001年   8篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   7篇
  1996年   12篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1991年   4篇
  1990年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1974年   3篇
  1971年   3篇
  1970年   4篇
  1958年   1篇
  1955年   1篇
  1952年   1篇
  1949年   1篇
  1943年   1篇
  1940年   1篇
排序方式: 共有576条查询结果,搜索用时 642 毫秒
161.
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter (α C h =?0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.  相似文献   
162.
163.
Målingen is the 0.7 km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne–Målingen doublet. The craters formed at 458 Ma by the impact of a binary asteroid related to the well-known 470 Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including ~500 m of sea water, ~80 m of limestone, ~30 m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Målingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90–100 nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general −1.4 mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.  相似文献   
164.
High Reynolds number flows around a circular cylinder close to a flat seabed have been computed using a two-dimensional standard high Reynolds number kε turbulence model. The effects of gap to diameter ratio, Reynolds number and flat seabed roughness for a given boundary layer thickness of the inlet flow upstream of the cylinder have been investigated. Hydrodynamic quantities and the resulting bedload transport have been predicted, and the vortex shedding mechanisms have been investigated. Predictions of hydrodynamic quantities around a cylinder located far away from the bed (so that the effect of the bed is negligible) are in satisfactory agreement with published experimental data and numerical results obtained for the flow around an isolated cylinder. Results for lower Reynolds number flows have also been computed for comparison with the high Reynolds number flow results. Overall it appears that the present approach is suitable for design purposes at high Reynolds numbers which are present near the seabed in the real ocean.  相似文献   
165.
A practical method for estimating the wave run-up height on a slender circular cylindrical foundation for wind turbines in nonlinear random waves is provided. The approach is based on the velocity stagnation head theory and Stokes second order wave theory by assuming the basic harmonic wave motion to be a stationary Gaussian narrow-band random process. Comparisons are made with measurements by De Vos et al. (2007), and some of the highest wave run-up events that were predicted agree with those measured.  相似文献   
166.
In this contribution, the regularized Earth’s surface is considered as a graded 2D surface, namely a curved surface, embedded in a Euclidean space . Thus, the deformation of the surface could be completely specified by the change of the metric and curvature tensors, namely strain tensor and tensor of change of curvature (TCC). The curvature tensor, however, is responsible for the detection of vertical displacements on the surface. Dealing with eigenspace components, e.g., principal components and principal directions of 2D symmetric random tensors of second order is of central importance in this study. Namely, we introduce an eigenspace analysis or a principal component analysis of strain tensor and TCC. However, due to the intricate relations between elements of tensors on one side and eigenspace components on other side, we will convert these relations to simple equations, by simultaneous diagonalization. This will provide simple synthesis equations of eigenspace components (e.g., applicable in stochastic aspects). The last part of this research is devoted to stochastic aspects of deformation analysis. In the presence of errors in measuring a random displacement field (under the normal distribution assumption of displacement field), the stochastic behaviors of eigenspace components of strain tensor and TCC are discussed. It is applied by a numerical example with the crustal deformation field, through the Pacific Northwest Geodetic Array permanent solutions in period January 1999 to January 2004, in Cascadia Subduction Zone. Due to the earthquake which occurred on 28 February 2001 in Puget Sound (M w > 6.8), we performed computations in two steps: the coseismic effect and the postseismic effect of this event. A comparison of patterns of eigenspace components of deformation tensors (corresponding the seismic events) reflects that: among the estimated eigenspace components, near the earthquake region, the eigenvalues have significant variations, but eigendirections have insignificant variations.  相似文献   
167.
168.
The effect of regional ocean loading on predicted rates of crustal uplift and gravitational change due to glacial isostatic adjustment (GIA) is determined for Antarctica. The effect is found to be significant for the ICE-3G and ICE-5G loading histories (up to ?8 mm/year and ?3 mm/year change in uplift rate and ?3 cm/year and ?1 cm/year equivalent water height change (EWHC) of surface mass, respectively). The effect is smaller (+1 mm/year; +0.25 cm/year) for the IJ05 loading history. The impact of ocean loading on the rate of change of the long-wavelength zonal harmonics of the Earth’s gravitational field is also significantly smaller for IJ05 than ICE-3G. A simple analytical formula is derived that is accurate to about 3% in a root-mean-square sense that relates predicted or observed gravitational change at the surface of the Earth (r = a) to the EWHC. A fundamental difference in the definition of the load histories accounts for the differing sensitivities to ocean loading. IJ05 defines its surface load history relative to the present-day surface load, rather than specifying an absolute loading history, and thus implicitly approximates the temporal and spatial mass exchange between grounded ice and open ocean. In contrast, ICE-3G and ICE-5G specify an absolute load history and explicit regional ocean loading substantially perturbs predicted GIA rates. Conclusions of previous studies that used IJ05 predictions without ocean loading are relatively robust.  相似文献   
169.
The temporal change of the rotation vector of a rotating body is, in the first order, identical in a space-fixed system and in a body-fixed system. Therefore, if the motion of the rotation axis of the earth relative to a space-fixed system is given as a function of time, it should be possible to compute its motion relative to an earth-fixed system, and vice versa. This paper presents such a transformation. Two models of motion of the rotation axis in the space-fixed system are considered: one consisting only of a regular (i.e., strictly conical) precession and one extended by circular nutation components, which are superimposed upon the regular precession. The Euler angles describing the orientation of the earth-fixed system with respect to the space-fixed system are derived by an analytical solution of the kinematical Eulerian differential equations. In the first case (precession only), this is directly possible, and in the second case (precession and nutation), a solution is achieved by a perturbation approach, where the result of the first case serves as an approximation and nutation is regarded as a small perturbation, which is treated in a linearized form. The transformation by means of these Euler angles shows that the rotation axis performs in the earth-fixed system retrograde conical revolutions with small amplitudes, namely one revolution with a period of one sidereal day corresponding to precession and one revolution with a period which is slightly smaller or larger than one sidereal day corresponding to each (prograde or retrograde) circular nutation component. The peculiar feature of the derivation presented here is the analytical solution of the Eulerian differential equations.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号