首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   22篇
  国内免费   8篇
测绘学   5篇
大气科学   26篇
地球物理   70篇
地质学   181篇
海洋学   20篇
天文学   56篇
综合类   3篇
自然地理   68篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   19篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   22篇
  2015年   17篇
  2014年   15篇
  2013年   31篇
  2012年   25篇
  2011年   36篇
  2010年   21篇
  2009年   18篇
  2008年   27篇
  2007年   11篇
  2006年   17篇
  2005年   14篇
  2004年   14篇
  2003年   8篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1969年   1篇
  1962年   1篇
排序方式: 共有429条查询结果,搜索用时 40 毫秒
401.
We present the Mock Map Facility, a powerful tool for converting theoretical outputs of hierarchical galaxy formation models into catalogues of virtual observations. The general principle is straightforward: mock observing cones can be generated using semi-analytically post-processed snapshots of cosmological N -body simulations. These cones can then be projected to synthesize mock sky images. To this end, the paper describes in detail an efficient technique for creating such mock cones and images from the galaxies in cosmological simulations ( galics ) semi-analytic model, providing the reader with an accurate quantification of the artefacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal – typically peaking at less than 10 per cent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite-volume effects, and show that it vanishes at scales larger than approximately one-tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with galics / momaf compare well with K -band observations and the two-degree field galaxy redshift survey. Given finite-volume effects, we also show that the model can reproduce the automatic plate measuring machine angular correlation function. The momaf results discussed here are made publicly available to the astronomical community through a public data base. Moreover, a user-friendly Web interface ( http://galics.iap.fr ) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.  相似文献   
402.
There are numerous complex organic molecules containing carbon and oxygen atoms which show either C–C–O or C–O–C bonding backbone. This paper examines altogether 51 C–C–O and C–O–C bonding backbone molecules from ten different isomeric groups (C2H2O, C3H2O, C2H4O, C2H4O2, C3H4O, C2H6O, C2H6O2, C3H6O, C3H6O2, C3H8O) to summarize the present astronomical status of these molecules. Accurate calculations of enthalpy of formation of these molecules show that the isomers with C–C–O backbone are more stable than the C–O–C backbone. Interestingly, a detailed analysis of relevant astromolecules indicates that most of the observed astromolecules have the C–C–O backbone. As a matter of fact, of all the molecules examined in this study, 80% of the astronomically observed species have the C–C–O backbone while only 20% have the C–O–C backbone. In general, interstellar abundance of a molecule is controlled by some factors such as kinetics, formation and destruction pathways,thermodynamics etc. A proper consideration of these factors could explain the observed abundances of these molecules. All these possible key factors are discussed in this paper.  相似文献   
403.
The vertical stratification of carbon dioxide (CO2) injected into a deep layered aquifer made up of high-permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investigated with a Buckley–Leverett equation including gravity effects. In a first step, we study both by theory and simulation the application of this equation to the vertical migration of a light phase (CO2), in a denser phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piecewise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution of the light phase saturation. These solutions agree well with simulation results. We show that the flux continuity condition at interfaces between high-permeability and low-permeability layers leads to CO2 saturation discontinuities at these interfaces and, in particular, to a saturation increase beneath low-permeability layers. In a second step, we analyze the vertical migration of a CO2 plume injected into a 2D layered aquifer. We show that the CO2 vertical stratification under each low-permeability layer is induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenomenon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site.  相似文献   
404.
As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models.  相似文献   
405.
406.
Natural Resources Research - The special issue entitled “Developments in Quantitative Assessment and Modeling of Mineral Resource Potential” is composed of 17 papers that cover a...  相似文献   
407.
408.
409.
We report new petrological, phase equilibria modeling, and fluid inclusion data for pelitic and mafic granulites from Rundv?gshetta in the highest-grade region of the Neoproterozoic Lützow-Holm Complex(LHC),East Antarctica, and provide unequivocal evidence for fluid-rock interaction and high-temperature metasomatism in the presence of brine fluid. The studied locality is composed dominantly of well-foliated pelitic granulite(K-feldspar+quartz+sillimanite+garnet+ilmenite) with foliation-parallel bands and/or layers of mafic granulite(plagioclase+orthopyroxene+garnet+ilmenite+quartz+biotite). The boundary between the two lithologies is defined by thin(about 1 -20 cm in thick) garnet-rich layers with a common mineral assemblage of garnet+plagioclase+quartz+ilmenite+biotite ? orthopyroxene. Systematic increase of grossular and decrease of pyrope contents in garnet as well as decreasing Mg/(Fe+Mg) ratio of biotite from the pelitic granulite to garnet-rich rock and mafic granulite suggest that the garnet-rich layer was formed by metasomatic interaction between the two granulite lithologies. Phase equilibria modeling in the system NCKFMASHTO demonstrates that the metasomatism took place at 850 -860℃, which is slightly lower than the peak metamorphism of this region, and the modal abundance of garnet is the highest along the metapeliteemetabasite boundary(up to 40%), which is consistent with the field and thin section observations. The occurrence of brine(7.0 -10.9 wt.% Na Cleqfor ice melting or 25.1 -25.5 wt.% NaC leqfor hydrohalite melting) fluid inclusions as a primary phase trapped within plagioclase in the garnet-rich layer and the occurrence of Cl-rich biotite(Cl = 0.22 -0.60 wt.%) in the metasomatic rock compared to that in pelitic(0.15 -0.24 wt.%) and mafic(0.06-0.13 wt.%) granulites suggest infiltration of brine fluid could have given rise to the high-temperature metasomatism. The fluid might have been derived from external sources possibly related to the formation of major suture zones formed during the Gondwana amalgamation.  相似文献   
410.
Stable isotope measurements (O, C, Sr), microthermometry and salinity measurements of fluid inclusions from different fracture populations in several anticlines of the Sevier‐Laramide Bighorn basin (Wyoming, USA) were used to unravel the palaeohydrological evolution. New data on the microstructural setting were used to complement previous studies and refine the fracture sequence at basin scale. The latter provides the framework and timing of fluid migration events across the basin during the Sevier and Laramide orogenic phases. Since the Sevier tectonic loading of the foreland basin until its later involvement into the Laramide thick‐skinned orogeny, three main fracture sets (out of seven) were found to have efficiently enhanced the hydraulic permeability of the sedimentary cover rocks. These pulses of fluid are attested by calcite crystals precipitated in veins from hydrothermal (T > 120 °C) radiogenic fluids derived from Cretaceous meteoric fluids that interacted with the Precambrian basement rocks. Between these events, vein calcite precipitated from formational fluids at chemical and thermal equilibrium with surrounding environment. At basin scale, the earliest hydrothermal pulse is documented in the western part of the basin during forebulge flexuring and the second one is documented in basement‐cored folds during folding. In addition to this East/West diachronic opening of the cover rocks to hydrothermal pulses probably controlled by the tectonic style, a decrease in 87/86Sr values from West to East suggests a crustal‐scale partially squeegee‐type eastward fluid migration in both basement and cover rocks since the early phase of the Sevier contraction. The interpretation of palaeofluid system at basin scale also implies that joints developed under an extensional stress regime are better vertical drains than joints developed under strike‐slip regime and enabled migration of basement‐derived hydrothermal fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号