首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   20篇
  国内免费   1篇
测绘学   9篇
大气科学   27篇
地球物理   146篇
地质学   238篇
海洋学   59篇
天文学   142篇
综合类   2篇
自然地理   49篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   12篇
  2016年   10篇
  2015年   10篇
  2014年   13篇
  2013年   35篇
  2012年   8篇
  2011年   21篇
  2010年   22篇
  2009年   24篇
  2008年   19篇
  2007年   18篇
  2006年   25篇
  2005年   25篇
  2004年   27篇
  2003年   26篇
  2002年   21篇
  2001年   19篇
  2000年   26篇
  1999年   17篇
  1998年   19篇
  1997年   12篇
  1996年   8篇
  1995年   11篇
  1994年   10篇
  1993年   14篇
  1992年   12篇
  1991年   13篇
  1990年   9篇
  1989年   13篇
  1988年   4篇
  1987年   12篇
  1986年   7篇
  1985年   10篇
  1984年   19篇
  1983年   12篇
  1982年   9篇
  1981年   10篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1966年   3篇
排序方式: 共有672条查询结果,搜索用时 0 毫秒
101.
Abstract

This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short‐baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation.

A preliminary test of several crucial elements of the system was performed at the Scripps Institution of Oceanography (SIO) in December 1989. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter.

The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter. Further analysis will be required to investigate the magnitude of systematic errors.  相似文献   
102.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   
103.
Seismic performance attributes of multi‐story passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are investigated for 12‐story moment resisting frames modeled as ‘10+2’ stories and ‘8+4’ stories. Segmented upper portion of the stories are isolated as a tuned mass, and a passive viscous damper or semi‐active resetable device is adopted as energy dissipation strategy. The semi‐active approach uses feedback control to alter or manipulate the reaction forces, effectively re‐tuning the system depending on the structural response. Optimum tuned mass damper control parameters and appropriate matching SATMD configurations are adopted from a companion study on a simplified two‐degree‐of‐freedom system. Statistical performance metrics are presented for 30 probabilistically scaled earthquake records from the SAC project. Time history analyses are used to compute response reduction factors across a wide range of seismic hazard intensities. Results show that large SATMD systems can effectively manage seismic response for multi‐degree‐of freedom systems across a broad range of ground motions in comparison to passive solutions. Specific results include the identification of differences in the mechanisms by which SATMD and PTMD systems remove energy, based on the differences in the devices used. Additionally, variability is seen to be tighter for the SATMD systems across the suites of ground motions used, indicating a more robust control system. While the overall efficacy of the concept is shown the major issues, such as isolation layer displacement, are discussed in detail not available in simplified spectral analyses, providing further insight into the dynamics of these issues for these systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
104.
This paper presents an innovative set of high‐seismic‐resistant structural systems termed Advanced Flag‐Shaped (AFS) systems, where self‐centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco‐elasto‐plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity‐dependent with displacement‐dependent energy dissipation for self‐centering systems, particularly to counteract near‐fault earthquakes. Non‐linear time‐history analyses (NLTHA) on a set of four single‐degree‐of‐freedom (SDOF) systems under a suite of 20 far‐field and 20 near‐fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base‐shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, λ1 and λ2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0 s and with various strength levels when subjected to far‐field and near‐fault earthquakes. For the design of self‐centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, λ1 is recommended to be in the range of 0.8–1.6 while λ2 to be between 0.25 and 0.75 to ensure sufficient self‐centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
105.
The Andes Cordillera acts as regional ??Water Towers?? for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°?C39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657?years and captures interannual to decadal scales of variability in late spring?Cearly summer PDSI. These changes are related to the north?Csouth oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Ni?o-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross?CAmundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.  相似文献   
106.
Damping constitutes a major source of uncertainty in dynamic analysis and an open issue to experimental and analytical research. After a thorough review of the current views and approaches existing in literature on damping and its appropriate modelling, this paper focuses on the implications of the available modelling options on analysis. As result of a series of considerations, a damping modelling solution for nonlinear dynamic analyses of cantilever RC walls is suggested within the frame of Direct Displacement-Based Design, supported by comparative analyses on wall structures.  相似文献   
107.
Passive treatment systems have a long history in the remediation of mining impacted water. The functioning of these systems is poorly understood, in particular the microbial processes that underpin metal removal. A biologically based engineered wetland treatment system that has operated in Trail, B.C. to treat seepage from a historic Pb and Zn smelter landfill, was investigated. The system has functioned for more than a decade, an unusually long life span for a passive bioreactor design. The study focuses on the 5a of operation from 2003 until 2007. Arsenic is a major contaminant in the ore that is processed in Trail, which has caused high As concentrations in the seepage. In addition to As, Zn and Cd removal were investigated. During the 5-a period, the system sequestered 2990 kg of As, 7700 kg of Zn and 85 kg of Cd. Nearly 90% of these elements were removed in two biochemical reactors (BCRs) that comprise the first two components of the six cell system, with the remainder removed in plant-based polishing cells. Average input concentrations over the 5-a period were 2.3 and 4.1 mM for As and Zn, respectively and 0.45 μM for Cd. Final output concentrations were reduced to 0.01 mM for As, 0.05 mM for Zn and 0.18 μM for Cd. Sulfur removal averaged 34% of input concentration. Analysis of mineral formation in the system using X-ray diffraction and scanning electron microscopy indicated kottigite (Zn3(AsO4)2⋅8H2O) and sphalerite (ZnS) as the major mineral phases controlling As and Zn sequestration; Cd appears to be immobilized as CdS. Evidence for orpiment was obtained from X-ray absorption spectroscopy (XANES) studies, and arsenopyrite was not detected. Although microbial activity dominates the removal of Zn, As and Cd from the soluble phase, abiotic removal mechanisms contribute including sorption of As and Zn to biosolids and filtration of metal precipitates by the solid matrix. The removal of toxic elements over the period appeared to be relatively consistent. Seasonal fluctuations, a large spike in input element concentrations over a 2-month period, and removal of the two biochemical reactors during a period of reconstruction appeared to have relatively little impact on the system as a whole.  相似文献   
108.
Triaxial shear testing of polished slickensided surfaces   总被引:1,自引:1,他引:0  
A series of consolidated-drained triaxial tests were performed on precut and polished clay specimens to measure their drained residual strength. Two soils were tested during this research program: Rancho Solano Clay and San Francisco Bay Mud. Specimens were tested using a specially modified triaxial compression device which was developed to minimize the effects of end-platen restraint on the measured strengths. Special attention was paid to the influence of changing specimen area and membrane effects during the test. Triaxial test results were compared with baseline measurements of drained residual shear strength that were made for each of the clay soils using Bromhead ring shear tests and polished-specimen direct shear tests. Residual strength values measured in the triaxial device were higher than the drained residual strengths measured in the Bromhead ring shear apparatus and the direct shear device, indicating that this test approach is more challenging than the use of direct shear tests conducted on polished slickensided surfaces. Comparison of single stage and multistage triaxial test data indicates that multistage triaxial testing may work well for specimens that fail along a well-defined plane, provided that careful attention is given to the effects of end platen restraint, membrane restraint, and changes in specimen area during shear.  相似文献   
109.
Intrastratal shrinkage (often termed ‘synaeresis’) cracks are commonly employed as diagnostic environmental indicators for ancient salinity‐stressed, transitional fluvial‐marine or marginal‐marine depositional environments. Despite their abundance and use in facies interpretations, the mechanism of synaeresis crack formation remains controversial, and widely accepted explanations for their formation have hitherto been lacking. Sedimentological, ichnological, petrographic and geochemical study of shallow marine mudstone beds from the Ordovician Beach Formation of Bell Island, Newfoundland, has revealed that crack development (cf. synaeresis cracks) on the upper surface of mudstone beds is correlated with specific organic, geochemical and sedimentological parameters. Contorted, sinuous, sand‐filled cracks are common at contacts between unbioturbated mudstone and overlying sandstone beds. Cracks are absent in highly bioturbated mudstone, and are considered to pre‐date firmground assemblages of trace fossils that include Planolites and Trichophycus. The tops of cracked mudstone beds contain up to 2·1 wt% total organic carbon, relative to underlying mudstone beds that contain around 0·5 wt% total organic carbon. High‐resolution carbon isotope analyses reveal low δ13Corg values (?27·6‰) on bed tops compared with sandy intervals lacking cracks (?24·4 to ?24·9‰). Cracked mudstone facies show evidence for microbial matgrounds, including microbially induced sedimentary structures on bedding planes and carbonaceous laminae and tubular carbonaceous microfossils in thin section. Non‐cracked mudstone lacks evidence for development of microbial mats. Microbial mat development is proposed as an important prerequisite for intrastratal shrinkage crack formation. Both microbial mats and intrastratal shrinkage cracks have broad palaeoenvironmental distributions in the Precambrian and early Phanerozoic. In later Phanerozoic strata, matgrounds are restricted to depositional environments that are inhospitable to burrowing and surface‐grazing macrofauna. Unless evidence of synaeresis (i.e. contraction of clay mineral lattices in response to salinity change) can be independently demonstrated, the general term ‘intrastratal shrinkage crack’ is proposed to describe sinuous and tapering cracks in mudstone beds.  相似文献   
110.
The joint Japan/US/UK Hinode mission includes the first large-aperture visible-light solar telescope flown in space. One component of the Focal Plane Package of that telescope is a precision spectro-polarimeter designed to measure full Stokes spectra with the intent of using those spectra to infer the magnetic-field vector at high precision in the solar photosphere. This article describes the characteristics of the flight hardware of the Hinode Spectro-Polarimeter, and summarizes its in-flight performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号