首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   35篇
  国内免费   4篇
测绘学   26篇
大气科学   59篇
地球物理   309篇
地质学   366篇
海洋学   102篇
天文学   198篇
综合类   2篇
自然地理   205篇
  2021年   7篇
  2020年   12篇
  2019年   9篇
  2018年   22篇
  2017年   17篇
  2016年   20篇
  2015年   26篇
  2014年   32篇
  2013年   64篇
  2012年   24篇
  2011年   41篇
  2010年   42篇
  2009年   51篇
  2008年   54篇
  2007年   61篇
  2006年   48篇
  2005年   38篇
  2004年   51篇
  2003年   42篇
  2002年   34篇
  2001年   26篇
  2000年   32篇
  1999年   17篇
  1998年   17篇
  1997年   30篇
  1996年   22篇
  1995年   24篇
  1994年   12篇
  1993年   22篇
  1992年   24篇
  1991年   26篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   12篇
  1986年   18篇
  1985年   18篇
  1984年   22篇
  1983年   17篇
  1982年   18篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1978年   15篇
  1977年   20篇
  1976年   11篇
  1975年   14篇
  1974年   13篇
  1973年   14篇
  1972年   8篇
排序方式: 共有1267条查询结果,搜索用时 20 毫秒
101.
102.
The Lesser Antilles subduction zone is an extreme case of the subduction of old (~ 90 m.y.) lithosphere at a slow (~ 2 cm/y) convergence rate. Focal mechanisms of the largest earthquakes in the area have been obtained using body and surface wave data. During the time period (1950–1978) studied the subduction seismicity appears to represent primarily intraplate rather than interplate deformation. All three large (magnitude seven) earthquakes were from intraplate normal faults; no large thrust faulting earthquakes and few small ones occurred. These observations suggest that the plate boundary is largely decoupled, that subduction is at least partially aseismic, and that the downgoing slab is in a state of extension.  相似文献   
103.
Observations of the 24 May 1981 occultation of an uncatalogued star by Neptune made at the Cerro Tololo Inter-American Observatory have been analyzed to yield temperature profiles of Neptune's upper atmosphere for number densities near 5 × 1013 cm?3. The mean temperatures at immersion (latitude ?56°) and emersion (latitude ?16°) obtained by numerical inversion were 140 ± 10°K and 154 ± 10°K, respectively. The immersion and emersion profiles are remarkably similar in overall shape, suggestive of global atmospheric layering. From the astrometry of the event, precise relative positions of Neptune and the occulted were obtained.  相似文献   
104.
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as ‘monsoon’ or ‘cloudburst’ rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows.  相似文献   
105.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   
106.
107.
Radiogenic heat production (RHP) represents a significant fraction of surface heat flow, both on cratons and in sedimentary basins. RHP within continental crust—especially the upper crust—is high. RHP at any depth within the crust can be estimated as a function of crustal age. Mantle RHP, in contrast, is always low, contributing at most 1 to 2 mW/m2 to total heat flow. Radiogenic heat from any noncrystalline basement that may be present also contributes to total heat flow. RHP from metamorphic rocks is similar to or slightly lower than that from their precursor sedimentary rocks. When extension of the lithosphere occurs—as for example during rifting—the radiogenic contribution of each layer of the lithosphere and noncrystalline basement diminishes in direct proportion to the degree of extension of that layer. Lithospheric RHP today is somewhat less than in the distant past, as a result of radioactive decay. In modeling, RHP can be varied through time by considering the half lives of uranium, thorium, and potassium, and the proportional contribution of each of those elements to total RHP from basement. RHP from sedimentary rocks ranges from low for most evaporites to high for some shales, especially those rich in organic matter. The contribution to total heat flow of radiogenic heat from sediments depends strongly on total sediment thickness, and thus differs through time as subsidence and basin filling occur. RHP can be high for thick clastic sections. RHP in sediments can be calculated using ordinary or spectral gamma-ray logs, or it can be estimated from the lithology.  相似文献   
108.
This article presents an object-based conceptual framework and numerical algorithms for representing and analyzing coastal morphological and volumetric changes based on repeat airborne light detection and ranging (LiDAR) surveys. This method identifies and delineates individual zones of erosion and deposition as discrete objects. The explicit object representation of erosion and deposition zones is consistent with the perception and cognition of human analysts and geomorphologists. The extracted objects provide ontological and epistemological foundation to localize, represent, and interpret erosion and deposition patches for better coastal resource management and erosion control. The discrete objects are much better information carriers than the grid cells in the field-based representation of source data. A set of spatial and volumetric attributes are derived to characterize and quantify location, area, shape, orientation, depth, volume, and other properties of erosion and deposition objects. Compared with the conventional cell-by-cell differencing approaches, our object-based method gives a concise and high-level representation of information and knowledge about coastal morphological dynamics. The derived attributes enable the discrimination of true morphological changes from artifacts caused by data noise and processing errors. Furthermore, the concise object representation of erosion and deposition zones facilitates overlay analysis in conjunction with other GIS data layers for understanding the causes and impacts of morphological and volumetric changes. We have implemented a software tool for our object-based morphological analysis, which will be freely available for the public. An example is used to demonstrate the utility and effectiveness of this new method.  相似文献   
109.
Seismic reflection profiling in the South San Clemente Basin and the southern portion of the San Diego Trough has revealed at least six sedimentary units exhibiting varying stages of deformation. Four of the units are interpreted to be marine turbidites supplied by adjacent submarine canyons. Sediments comprising the Descanso Plain and correlative material within the South San Clemente Basin are attributed to a southerly source (Banda Canyon), while the more recent Quaternary turbidites from Coronado Canyon filled the southern San Diego Trough and then spilled over into South San Clemente Basin. The relatively high but intermittent rates of sedimentation, together with shifting sources and areas of deposition, have resulted in sedimentary units that were emplaced in comparatively short episodes but which were subjected to relatively continuous tectonic activity. Consequently, the sedimentary layers of each unit appear uniformly affected by deformation which increases in successively older units.  相似文献   
110.
We examined the spatiotemporal patterns of fire in insular Southeast Asia from July 1996 to December 2001 using a set of consistent, nighttime fire observations provided by the Along Track Scanning Radiometer (ATSR) sensor. Monthly ATSR fire counts were analyzed relative to georeferenced climatic and land-cover data from a variety of sources. We found that fires were strongly correlated with Southern Oscillation Index (SOI) (r = ?0.75) and Niño 3.4 index (r = 0.72) in forested land-cover types within the equatorial belt (5.5°S–5.5°N). Cross-correlation analysis revealed that detrended SOI was modestly correlated (r = 0.42) with detrended monthly fire count with a positive lag of four months. However, our analysis also revealed that fire counts reached their maximum 6 months before the absolute maximum of SOI. Annual sums of SOI (∑SOI) and fire counts revealed linearity for ∑SOI≤ 0. Overall, the results suggest that ENSO indices may have limited predictive utility at a monthly time scale, but that temporal aggregation and additional fire observations may enhance our capacity to forecast fires in different cover types based on ENSO data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号