首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   4篇
  国内免费   2篇
测绘学   10篇
大气科学   19篇
地球物理   30篇
地质学   59篇
海洋学   16篇
天文学   37篇
自然地理   14篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   2篇
  2013年   13篇
  2012年   8篇
  2011年   4篇
  2010年   13篇
  2009年   5篇
  2008年   9篇
  2007年   14篇
  2006年   6篇
  2005年   10篇
  2004年   12篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   7篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
171.
172.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the remote sensing results. Fourteen study sites were selected based on diversity in size, deposit type, and thermal activity. Field work included detailed site surveys such as land cover analysis, photography, Global Positioning System (GPS) data collection, radiometric analysis, and VNIR spectroscopy. Samples of hot spring deposits, geyser deposits, and soil were also collected. Analysis of ASTER data provided broad scale characteristics of the hot springs and their deposits, including the identification of thermal anomalies. AVIRIS high spectral resolution short-wave infrared (SWIR) spectroscopy provided the ability to detect hydrothermally altered minerals as well as a calibration for the multispectral SWIR ASTER data. From the image analysis, differences in these basins were identified including the extent of thermal alteration, the location and abundance of alteration minerals, and a comparison of active, near-extinct, and extinct geysers. We determined the activity level of each region using a combination of the VNIR-SWIR-TIR spectral differences as well as the presence of elevated temperatures, detected by the TIR subsystem of ASTER. The results of this study are applicable to the exploration of extinct mineralized hydrothermal deposits on both Earth and Mars.  相似文献   
173.
174.
175.
Collaborative spatial decision support systems (C‐SDSS) have been used to help groups of stakeholders understand data and search for opportunities at resolving local and regional decision problems in various domains including land use, trans‐ portation, and water resources. The key issue in designing an effective C‐SDSS is the anticipation of user information needs. Knowledge of user information needs can guide system designers in achieving a C‐SDSS that fits the decision process. In this paper we present a design approach that is informed by stakeholder concerns, as part of a user needs assessment. The approach is based on the premise that knowing stakeholders’ concerns can help anticipate user information needs and consequently lead to a more usable C‐SDSS. We demonstrate the approach with the example of a spatio‐temporal decision problem involving conjunctive water administration in the Boise River Basin in southwestern Idaho. The spatial dimension of the decision task involves delineating the areas of conjunctive water administration while the temporal dimension involves selecting the year in which a given area will start to be administered. We show how the elicitation of stakeholder concerns leads to functional specification of a collaborative spatio‐temporal decision support system.  相似文献   
176.
177.
This study evaluates the quality of GPS radio occultation (RO) atmospheric excess phase data derived with single- and double-difference processing algorithms. A spectral analysis of 1 s GPS clock estimates indicates that a sampling interval of 1 s is necessary to adequately remove the GPS clock error with single-difference processing. One week (May 2–8, 2009) of COSMIC/FORMOSAT-3 data are analyzed in a post-processed mode with four different processing strategies: (1) double-differencing with 1 s GPS ground data, (2) single-differencing with 30 s GPS clock estimates (standard COSMIC Data Analysis and Archival Center product), (3) single-differencing with 5 s GPS clocks, and (4) single-differencing with 1 s GPS clocks. Analyses of a common set of 5,596 RO profiles show that the neutral atmospheric bending angles and refractivities derived from single-difference processing with 1 s GPS clocks are the highest quality. The random noise of neutral atmospheric bending angles between 60 and 80 km heights is about 1.50e−6 rad for the single-difference cases and 1.74e−6 rad for double-differencing. An analysis of pairs of collocated soundings also shows that bending angles derived from single-differencing with 1 s GPS clocks are more consistent than with the other processing strategies. Additionally, the standard deviation of the differences between RO and high-resolution European Center for Medium range Weather Forecasting (ECMWF) refractivity profiles at 30 km height is 0.60% for single-differencing with 1 and 5 s GPS clocks, 0.68% for single-differencing with 30 s clocks, and 0.66% for double-differencing. A GPS clock-sampling interval of 1 s or less is required for single- and zero-difference processing to achieve the highest quality excess atmospheric phase data for RO applications.  相似文献   
178.
Of 21 flares of importance 1 or greater, observed on 15 days, all were found to lie adjacent to a neutral line in the longitudinal component of photospheric magnetic fields. In most of these cases, the flare consisted of two or more segments separated by the neutral line and located in areas of strong field and high-longitudinal field gradient. In some cases, the flare segments extended into areas of weak-magnetic field and low-field gradient, but maintained an orientation adjacent to a neutral line.Optical and magnetic field records of higher resolution were obtained on 6 July 1965. These observations reveal an excellent correlation between the size, shape, and intensity of the H fine structures and the longitudinal component of the photospheric magnetic fields, except in the vicinity of the neutral line. Sections of the neutral line are marked by long fibrils lying perpendicular to the neutral line or by small filaments lying along the neutral line.The development of a flare of importance 1 in this region appeared to be more precisely related to the neutral line than was found for the flares and magnetic fields observed with lower resolution. The two major segments of this flare lengthened in directions approximately parallel to the neutral line, while simultaneously drifting perpendicularly away from the neutral line. The initial rate of drift systematically varied from 1 to 12 km/sec at a series of positions approximately parallel to the neutral line and corresponding to increasing distance from strong fields. The rate of drift was also observed to decelerate throughout the life of the flare.  相似文献   
179.
High resolution sampling of sediment cores covering approximately the last 4000 yr from Lochan Uaine, a small corrie loch in the Scottish Cairngorm Mountains, show quasi‐periodic cycles in organic matter (measured as percentage loss on ignition). Analysis of these cycles show correspondences between loss on ignition, δ13C values and chironomid head capsule abundance. We interpret the changes as reflecting changes in lake productivity and hypothesise that they are driven by climate variability. However, it is not yet clear whether the periods of relatively high organic matter production and preservation are associated with colder or with warmer conditions. Nevertheless the results indicate the value of using sediments from remote, undisturbed mountain lakes as recorders of Holocene climate variability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
180.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号