首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   3篇
测绘学   8篇
大气科学   19篇
地球物理   42篇
地质学   24篇
海洋学   47篇
天文学   3篇
综合类   2篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   14篇
  2010年   15篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
排序方式: 共有151条查询结果,搜索用时 203 毫秒
1.
The quantitative assay of clay minerals, soils, and sediments for Fe(II) and total Fe is fundamental to understanding biogeochemical cycles occurring therein. The commonly used ferrozine method was originally designed to assay extracted forms of Fe(II) from non-silicate aqueous systems. It is becoming, however, increasingly the method of choice to report the total reduced state of Fe in soils and sediments. Because Fe in soils and sediments commonly exists in the structural framework of silicates, extraction by HCl, as used in the ferrozine method, fails to dissolve all of the Fe. The phenanthroline (phen) method, on the other hand, was designed to assay silicate minerals for Fe(II) and total Fe and has been proven to be highly reliable. In the present study potential sources of error in the ferrozine method were evaluated by comparing its results to those obtained by the phen method. Both methods were used to analyze clay mineral and soil samples for Fe(II) and total Fe. Results revealed that the conventional ferrozine method under reports total Fe in samples containing Fe in silicates and gives erratic results for Fe(II). The sources of error in the ferrozine method are: (1) HCl fails to dissolve silicates and (2) if the analyte solution contains Fe3+, the analysis for Fe2+ will be photosensitive, and reported Fe(II) values will likely be greater than the actual amount in solution. Another difficulty with the ferrozine method is that it is tedious and much more labor intensive than the phen method. For these reasons, the phen method is preferred and recommended. Its procedure is simpler, takes less time, and avoids the errors found in the ferrozine method.  相似文献   
2.
Jaehoon Yoo   《Ocean Engineering》2007,34(8-9):1089-1095
A surface panel method treating a boundary-value problem of the Dirichlet type with the free surface is presented to design a three-dimensional body corresponding to a prescribed pressure distribution. The free surface boundary condition is linearized with respect to the oncoming flow, and computed by four-point finite difference scheme. Sample designs for submerged spheroids and Wigley hull are carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but also by experiment.  相似文献   
3.
Fault slip analysis of Quaternary faults in southeastern Korea   总被引:1,自引:0,他引:1  
The Quaternary stress field has been reconstructed for southeast Korea using sets of fault data. The subhorizontal direction of the maximum principal stress (σ1) trended ENE and the direction of the minimum principal stress (σ3) was nearly vertical. The stress ratio (Φ = (σ2 − σ3) / (σ1 − σ3)) value was 0.65. Two possible interpretations for the stress field can be made in the framework of eastern Asian tectonics; (1) The σHmax trajectory for southeast Korea fits well with the fan-shaped radial pattern of maximum principal stress induced by the India–Eurasia collision. Thus, we suggest that the main source for this recent stress field in southeast Korea is related to the remote India–Eurasia continental collision. (2) The stress field in Korea shows a pattern similar to that in southwestern Japan. The origin for the E–W trending σHmax in Japan is known to be related to the mantle upwelling in the East China Sea. Thus, it is possible that Quaternary stress field in Korea has evolved synchronously with that in Japan. We suggest further studies (GPS and in situ stress measurement) to test these hypotheses.  相似文献   
4.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   
6.
Modern and fossil benthic foraminifera were examined from nine surface sediments and two piston cores along the ~131°W transect in the equatorial Pacific Ocean. This study was conducted to clarify the biotic response of abyssal benthic foraminifera during the last 220 ka to changes in the seasonal extent of the Intertropical Convergence Zone (ITCZ). The abundance of modern benthic foraminifera was high at stations between the equator and 6°N, whereas it was low at stations north of 6°N, which is generally consistent with the latitudinal CaCO3 distribution of surface sediments. The northward increase of Epistominella exigua from the equator to ~6°N is similar to the seasonal variations in chlorophyll-a concentrations in the surface water and ITCZ position along ~131°W. This species was more common at core PC5103 (~6°N) than at core PC5101 (~2°N) after ~130 ka, when the Shannon-Wiener diversity (H’) between the two cores started to diverge. Hence, the presentday latitudinal difference in benthic foraminifera (E. exigua and species diversity) between ~2°N and ~6°N along ~131°W has been generally established since ~130 ka. According to the modern relationship between the seasonality of primary production and seasonal ITCZ variations in the northern margin of the ITCZ, the latitudinal divergence of benthic foraminiferal fauna between ~2°N and ~6°N since ~130 ka appear to have been induced by more distinct variations in the seasonal movement of ITCZ.  相似文献   
7.
We performed a time-series analysis of environmental variables and biological parameters to understand temporal variations in the macrobenthic community in the Chokchon macrotidal flats, Incheon, Korea. Bimonthly sampling of macrobenthos and sediments was conducted from May 1989 through November 2001. A decomposition method composed of seasonality, trends and cyclical variation was employed in this study. We focused on trends of the selected variables and assumed that those with positive or negative trends caused changes in biological parameters. Most variables showed strong seasonality (≥ 95% of the total variance). Significant positive trends (p < 0.0001) were observed in sea water temperature and sediment ignition loss. Macrobenthic biomass and species number also showed significant positive trends (p < 0.0001). Biomass indicated that the study area underwent eutrophication since the mid 1990s. A notable increase in species number occurred throughout the study period. The flattened temperature trend after 1994 and intensified eutrophication after the mid 1990s indicated that the species increase in the former period was in response to increasing temperature, while that in the latter period was caused by eutrophication. Although our study suggested an increasing trend in diversity, it is important to check for unexpected changes and establish monitoring programs to provide early warnings, especially in lower latitudes.  相似文献   
8.
The representation of place is a key theoretical advancement that geographic information science can offer to improve the understanding of environmental determinants of health, but developing robust computational representations of place requires a substantial departure from conventional notions of geographic representation in GIS. Unlike conventional GIS representations based on either objects or locations, we suggest that place representation should incorporate dynamic subjective, experiential, and relational aspects of place, as the influence of place on health behavior concerns not only the features that can be objectively observed at a particular location but also the environmental perceptions of the individual, as molded by biological, social, and experiential characteristics. In addition, assessments of environmental exposures on health outcomes should focus on individuals' time–activity patterns and microenvironment profiles, which form a potentially unique personalized exposure environment for each individual. Addressing these representational challenges via collaborative research has the potential to advance both geographic information science and health research.  相似文献   
9.
Bhavya  P. S.  Min  Jun-Oh  Kim  Min-Seob  Jang  Hyo Keun  Kim  Kwanwoo  Kang  Jae Joong  Lee  Jae Hyung  Lee  Dabin  Jo  Naeun  Kim  Myung Joon  Kim  Yejin  Lee  Junbeom  Lee  Chang Hwa  Bae  Hyeonji  Yoo  Hyeju  Park  Sanghoon  Yun  Mi Sun  Lee  Sang Heon 《Ocean Science Journal》2019,54(4):515-528
Ocean Science Journal - Investigations on marine N2 fixation have gained momentum since 1960s with eventual establishments of relevant methodologies to identify species involved and quantify the...  相似文献   
10.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号