首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   5篇
  国内免费   6篇
测绘学   4篇
大气科学   14篇
地球物理   76篇
地质学   222篇
海洋学   37篇
天文学   82篇
综合类   2篇
自然地理   17篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   9篇
  2019年   18篇
  2018年   24篇
  2017年   24篇
  2016年   22篇
  2015年   19篇
  2014年   18篇
  2013年   34篇
  2012年   25篇
  2011年   27篇
  2010年   30篇
  2009年   32篇
  2008年   26篇
  2007年   26篇
  2006年   30篇
  2005年   14篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有454条查询结果,搜索用时 312 毫秒
61.
Sergeev  V. A.  Bikkuzina  G. R.  Newell  P. T. 《Annales Geophysicae》1997,15(10):1233-1245
Recently it has been shown that isotropic precipitation of energetic protons on the nightside is caused by a non-adiabatic effect, namely pitch-angle scattering of protons in curved magnetic field lines of the tail current sheet. Here we address the origin of isotropic proton precipitation on the dayside. Computations of proton scattering regions in the magnetopheric models T87, T89 and T95 reveal two regions which contribute to the isotropic precipitation. The first is the region of weak magnetic field in the outer cusp which provides the 1–2° wide isotropic precipitation on closed field lines in a 2–3 hour wide MLT sector centered on noon. A second zone is formed by the scattering on the closed field lines which cross the nightside equatorial region near the magnetopause which provides isotropic precipitation starting 1.5–2 h MLT from noon and which joins smoothly the precipitation coming from the tail current sheet. We also analyzed the isotropic proton precipitation using observations of NOAA low altitude polar spacecraft. We find that isotropic precipitation of >30 to > 80 keV protons continues around noon forming the continuous oval-shaped region of isotropic precipitation. Part of this region lies on open field lines in the region of cusp-like or mantle precipitation, its equatorward part is observed on closed field lines. Near noon it extends 1–2° below the sharp boundary of solar electron fluxes (proxy of the open/closed field line boundary) and equatorward of the cusp-like auroral precipitation. The observed energy dispersion of its equatorward boundary (isotropic boundary) agrees with model predictions of expected particle scattering in the regions of weak and highly curved magnetic field. We also found some disagreement with model computations. We did not observe the predicted split of the isotropic precipitation region into separate nightside and dayside isotropic zones. Also, the oval-like shape of the isotropic boundary has a symmetry line in 10–12 MLT sector, which with increasing activity rotates toward dawn while the latitude of isotropic boundary is decreasing. Our conclusion is that for both dayside and nightside the isotropic boundary location is basically controlled by the magnetospheric magnetic field, and therefore the isotropic boundaries can be used as a tool to probe the magnetospheric configuration in different external conditions and at different activity levels.  相似文献   
62.
We examine the use of geoinformation systems and relevant software applications in marine geomorphology in terms of the digital elevation model of the White Sea region. The geomorphological development of the contemporary shoreline is shown on the basis of comparing the parameters of adjacent surfaces. The technique is suggested for identifying relative tectonic deformations by determining the morphoblock division of the seabed surface. In this case, the boundaries of the time interval used in investigating the tectonic dislocations are specified indirectly by the scale coefficient of the initial digital model. This indirect relationship is determined on the basis of the well-known expression of a dependence of oscillations of a massive object in an elastic medium. By analyzing the structure of seabed relief, we determined areas with a high value of tectonic deformations for the period involved (Holocene) relative to the level of marine sedimentation. A neotectonic regionalization of the surface of the White Sea bed allowed us to identify, on the basis of statistical dependencies, large planate subhorizontal surfaces of the seabed. Upon comparing the graphical analytical information obtained with geomorphological characteristics of these surfaces, we determined four submarine terraces of an abrasion-accumulative origin and drew the corresponding boundaries within which the ancient White Sea existed over the course of the Holocene. By analyzing the position of the marine terraces, we identified a relative intensification of marine abrasion processes at a particular evolutionary stage of the water area. This is associated with a crucial marker event in the development of the White Sea water area, namely its connection with the Word Ocean in the early Holocene.  相似文献   
63.
The study of the stress-strain state of a medium in seismically quiet areas is difficult because of the absence of strong events. Under such circumstances, each earthquake, even relatively weak, is of high importance. In this case, all possible information on tectonic stresses and their dynamics, e.g., information on time, location, and magnitude of aftershocks, should be obtained from available seismic data. The earthquake near the town of Mariupol which occurred on August 7, 2016, had a body wave magnitude of 4.5–4.9 from the data of the different seismological centers. We detected 12 aftershocks that occurred within 5 days after the main shock using two seismic arrays (AKASG and BRTR) and one three-component station (KBZ) of the International Monitoring System, as well as two array stations of the Institute of Geosphere Dynamics, Russian Academy of Sciences. For six aftershocks, signals were found at three or more stations. The other aftershocks were detected from the data at two out of three nearest stations. Signal detection and association with aftershocks of the main shock, as well as estimation of magnitude and relative location of the found aftershocks, were carried out using the method of waveform cross-correlation (WFCC). The signals from the main shock that acted as the only master event (ME) for the WFCC method were used as waveform templates. To increase the signal-to-noise ratio and to determine the exact onset time of regular seismic waves from aftershocks, we used waveform templates of different length, from 10 to 180 s depending on the wave type and distance to the station, as well as band filtering in narrow frequency bands. The highest sensitivity of the detector and accuracy of the P-wave onset time estimates were reached when a waveform template included all regular waves from P to L g . Association of signals with aftershocks was based on back projection of signal arrival times to origin times using the travel time from a master event to the station, which was measured with a very low error, being equal to almost half of the digitization step length. To develop a seismic event hypothesis, the origin times at two or more stations should be spaced within a 2-s interval.  相似文献   
64.
The known distribution of wind‐blown Vedde Ash (ca. 10.3 ka BP) has been extended to the Karelian Isthmus in northwestern Russia. This has been possible as the result of a density separation technique that separates the rhyolitic Vedde Ash shards from the minerogenic host sediment. The Vedde Ash occurs in the middle of a pollen zone with high percentages of, for example, Artemisia and Chenopodiaceae, suggesting that the Younger Dryas (or GS‐I in the GRIP ice‐core event stratigraphy) was cold and dry throughout its duration. This is in agreement with sites in south Sweden where the Vedde Ash also occurs in the middle of a pollen zone dominated by Artemisia, Chenopodiaceae and Cyperaceae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
65.
Mineralogy and Petrology - This paper describes specific features of isomorphism of unusual amphiboles containing up to 23 wt% ZnO and up to 1.3 wt% CuO from sulfide-free...  相似文献   
66.
Water Resources - The dynamics of the talik zones, associated both with the internal cyclical nature of their development and with climate changes, leads to temporary differences in the volume of...  相似文献   
67.
Based on our UBV RI observations and X-ray data from the RXTE satellite, we have investigated the variability of the galaxy NGC 7469 over the period 1995–2009. In 1995–2000, the optical brightness of the galactic nucleus changed almost by 1 m in the U band. In 2000–2009, the amplitude of the optical variations was considerably lower. Regular X-ray observations began only in 2003. The X-ray fractional variability amplitude is higher than the optical one. The optical variability amplitude decreases with increasing wavelength. The full width at half maximum of the X-ray and B-band autocorrelation functions is about 8 and 62 days, respectively. The structure functions (SF) in the X-ray range on time scales up to 7 days and in the optical range on time scales up to 100 days have the form of a power law SF(τ) ∼ τ b , where τ is the time shift. On time scales of more than a day, where both structure functions have been determined rather reliably, their slopes differ markedly: b = 1.34 ± 0.06 and b = 0.25 ± 0.05 for the optical and X-ray ranges, respectively. The X-ray and B-band structure functions begin to flatten, respectively, near 6–8 days and on time scales of about 90 days. The observed structure functions can be described by the model of a superposition of independent Gaussian flares whose number changes with duration ω as n(ω) ∼ ω α and whose amplitudes depend on duration as A(ω) ∼ ω β. The flux distribution and the flux-amplitude relation are consistent with the model of a light curve in the form of a superposition of random flares. Once the fast intensity variations have been filtered out on long time scales, the X-ray light curve correlates well with the optical one. No lag of the X-ray variations relative to those in the B band is detected. The light variations in the R and I bands lag behind those in the B band calculated from the centroid of the cross-correlation function by 2.6 and 3.5 days, respectively, at a 3σ confidence level.  相似文献   
68.
One of the most powerful and long-lived flares on the active red dwarf YZ CMi is considered. The flare was observed in the U band at the Terskol Peak Observatory on February 9, 2008. During the formation of the flare over the course of 30 seconds, the flare-induced stellar luminosity increased and became more than 180 times the preflare value. The total duration of the flare was approximately one hour. At the flare maximum, quasi-periodic pulsations having a specified period of approximately 11 s, an initial modulation depth of 5.5%, and an exponential damping time of 29 s were discovered using wavelet analysis. Assuming that the pulsations were caused by fast magnetohydrodynamic oscillations of a flare loop, the following parameters were determined in the region of energy release using coronal seismology methods: plasma concentration (2 × 1010 cm−3), temperature (3 × 107 K), and magnetic field strength (0.015 T).  相似文献   
69.
The Quaternary stratigraphy of the Alpine Foreland consists of distinct terrace levels, which have been assigned to four morphostratigraphic units: Höhere (Higher) Deckenschotter, Tiefere (Lower) Deckenschotter, Hochterrasse (High Terrace) and Niederterrasse (Lower Terrace). Here, we focus on the terrace gravels at Hohle Gasse, SSE of Pratteln near Basel, which are mapped as Tiefere Deckenschotter. Petrographic and morphometric data established from clasts allowed to infer the transport mechanisms and sources of the gravels. Sedimentological analyses indicate that the gravels were transported by a braided river and deposited in a distal glaciofluvial setting. In addition, it can be shown that the majority of the clasts display multiple reworking and only a minority maintained a distinct glaciofluvial shape. Cosmogenic multi-isotope dating using 10Be and 36Cl allowed direct dating of the sediments at the study site. A depth-profile age of \(2 70_{ - 1 90}^{ + 8 30}\) ka for 10Be was achieved for the deposits at Hohle Gasse. Unfortunately, no age could be modelled from the 36Cl concentrations as the blank correction was too high. Furthermore, this age proves that the studied terrace level should be assigned to the morphostratigraphic unit Hochterrasse.  相似文献   
70.
Dipolarization fronts in the magnetotail plasma sheet   总被引:1,自引:0,他引:1  
We present a THEMIS study of a dipolarization front associated with a bursty bulk flow (BBF) that was observed in the central plasma sheet sequentially at X=−20.1, −16.7, and −11.0RE. Simultaneously, the THEMIS ground network observed the formation of a north-south auroral form and intensification of westward auroral zone currents. Timing of the signatures in space suggests earthward propagation of the front at a velocity of 300 km/s. Spatial profiles of current and electron density on the front reveal a spatial scale of 500 km, comparable to an ion inertial length and an ion thermal gyroradius. This kinetic-scale structure traveled a macroscale distance of 10RE in about 4 min without loss of coherence. The dipolarization front, therefore, is an example of space plasma cross-scale coupling. THEMIS observations at different geocentric distances are similar to recent particle-in-cell simulations demonstrating the appearance of dipolarization fronts on the leading edge of plasma fast flows in the vicinity of a reconnection site. Dipolarization fronts, therefore, may be interpreted as remote signatures of transient reconnection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号