首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   5篇
  国内免费   3篇
测绘学   13篇
大气科学   19篇
地球物理   120篇
地质学   154篇
海洋学   26篇
天文学   32篇
综合类   3篇
自然地理   57篇
  2024年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   5篇
  2016年   17篇
  2015年   8篇
  2014年   22篇
  2013年   26篇
  2012年   20篇
  2011年   24篇
  2010年   27篇
  2009年   31篇
  2008年   29篇
  2007年   23篇
  2006年   17篇
  2005年   26篇
  2004年   12篇
  2003年   19篇
  2002年   16篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
11.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10065-y  相似文献   
12.
Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.  相似文献   
13.
Direct push (DP) technologies are typically used for cost-effective geotechnical characterization of unconsolidated soils and sediments. In more recent developments, DP technologies have been used for efficient hydraulic conductivity (K) characterization along vertical profiles with sampling resolutions of up to a few centimetres. Until date, however, only a limited number of studies document high-resolution in situ DP data for three-dimensional conceptual hydrogeological model development and groundwater flow model parameterization. This study demonstrates how DP technologies improve building of a conceptual hydrogeological model. We further evaluate the degree to which the DP-derived hydrogeological parameter K, measured across different spatial scales, improves performance of a regional groundwater flow model. The study area covers an area of ~60 km2 with two overlying, mainly unconsolidated sand aquifers separated by a 5–7 m thick highly heterogeneous clay layer (in north-eastern Belgium). The hydrostratigraphy was obtained from an analysis of cored boreholes and about 265 cone penetration tests (CPTs). The hydrogeological parameter K was derived from a combined analysis of core and CPT data and also from hydraulic direct push tests. A total of 50 three-dimensional realizations of K were generated using a non-stationary multivariate geostatistical approach. To preserve the measured K values in the stochastic realizations, the groundwater model K realizations were conditioned on the borehole and direct push data. Optimization was performed to select the best performing model parameterization out of the 50 realizations. This model outperformed a previously developed reference model with homogeneous K fields for all hydrogeological layers. Comparison of particle tracking simulations, based either on the optimal heterogeneous or reference homogeneous groundwater model flow fields, demonstrate the impact DP-derived subsurface heterogeneity in K can have on groundwater flow and solute transport. We demonstrated that DP technologies, especially when calibrated with site-specific data, provide high-resolution 3D subsurface data for building more reliable conceptual models and increasing groundwater flow model performance.  相似文献   
14.
Diffractions not only carry important information about small-scale subsurface structures, they also possess unique properties, which make them a powerful tool for seismic processing and imaging. Since a point diffractor scatters an incoming wave to all directions, a diffraction event implies better illumination than a reflection, because the rays travel through larger parts of the subsurface. Furthermore, unlike the reflection case, in which the emergence location of the reflected wave depends on the source position, in the case of non-Snell scattering, up-going and down-going raypaths are decoupled. Based on this decoupling, we introduce a diffraction traveltime decomposition principle, which establishes a direct connection between zero-offset and finite-offset diffraction wavefield attributes. By making use of this approach, we are able to enhance diffractions and obtain high-quality diffraction wavefield attributes at arbitrary offsets in the prestack domain solely based on zero-offset processing without any further optimization of attributes. We show the accuracy of the method by fitting diffraction traveltimes, and on simple waveform data. Application to complex synthetic data shows the ability of the proposed approach to enhance diffractions and provide high-quality wavefield attributes even in sparsely illuminated regions such as subsalt areas. The promising results reveal a high potential for improved prestack data enhancement and further applications such as efficient diffraction-based finite-offset tomography.  相似文献   
15.
The northern part of the Northeast German Basin contains a large number of Late Permian (Zechstein) salt pillows, whereas diapiric structures are almost completely absent. This lack of diapirs facilitated the study of early stages of salt movement in the basin. Salt pillows and related structures were investigated in terms of distribution, geometry and time of initiation of salt flow within the regional geological context. The primary Zechstein thickness in the study area was reconstructed to gain more insight into the relationship between the geometry of the salt layer and the style of the salt-related structures. In this study, no clear spatial relationship between the salt structures and basement faults has been found and the location of the salt structures in this area appears to be highly independent of the underlying structural grain. The overburden is affected by minor faulting. We propose that buckling of the overburden due to regional compression significantly contributed to the initiation of the Late Jurassic to Early Cretaceous salt structures in the basin. Reverse faulting of the Gardelegen and Haldensleben Faults is related to inversion tectonics and exerted a compression on the basin fill. During the deformation, the Late Permian salt layer acted as an efficient detachment and led to a marked decoupling of the Mesozoic overburden from the underlying pre-Zechstein rocks.  相似文献   
16.
Reactive surface area is one of the key parameters for studying the kinetics of mineral dissolution. The common practice in experimental kinetics is to normalize the dissolution rate to the surface area measured by the BET method. The relationship between BET surface area and the reactive surface area is not trivial in minerals such as smectites, which possess both internal and external surface areas, and in which the dissolution is controlled by the chemical attack on the edge surface. The present study examines two proxies for the reactive surface area of the Clay Mineral Society reference smectite SAz-1: BET surface area and the edge surface area measured using AFM.Since smectites are very microporous, their BET surface area is strongly influenced by the degassing procedure. It is demonstrated that outgassing the smectite powder at 135°C in a 15 mL min−1 N2 gas flow for at least 24 hours minimizes contribution from micropores to less than 11% of the BET surface area.Following dissolution experiments in solutions with a low electrolyte concentration, the BET surface area increased from 34 ± 2 m2 g−1 in raw SAz-1 to 127 ± 13 m2 g−1 in SAz-1 sample recovered from dissolution experiments. This increase in BET surface area is explained by a decrease in the average size of the smectite aggregates, and by an increase in microporosity due to the depletion in the major interlayer cation, i.e., Ca2+. As the BET surface area of the raw smectite sample includes considerably less microporosity compared to the BET surface area of the smectite recovered from dissolution experiments, the former is a better approximation of the external surface area of the dried sample powder.AFM measurements show that there is no correlation between the specific external surface area of the sample and its specific edge surface area. This observation is explained by the platy morphology of the smectite particle in which the specific external surface area depends linearly on the height reciprocal, whereas the specific edge surface area is independent of the particles height and depends linearly on the sum of the reciprocals of the length of the axes. Therefore, there is no reason to expect a correlation between the BET and the edge surface area. Our results show that the edge surface area (4.9 ± 0.7 m2 g−1) of the smectite particles cannot be predicted based on its external surface area (136 ± 20 m2 g−1). Therefore, the BET surface area cannot serve as a proxy for the reactive surface area. We suggest using AFM measurements of the specific edge surface area as an alternative proxy for the reactive surface area of smectite.  相似文献   
17.
We investigated the influence of thermal maturity on the hydrogen isotope ratios of sedimentary hydrocarbons to prove that the isotope ratio of hydrocarbons mirrors paleoclimate signatures. δD values from n-alkanes and acyclic isoprenoids of two sediment sections (Kupferschiefer [KS], 258 Ma, and Posidonienschiefer [PS], 184 Ma) with different maturation history were investigated. Both covered thermal maturity from 0.48 to 1.3 Rc (vitrinite reflectance and reflectance calculated from MPI1). Sediment burial up to 4500 m caused thermal maturation of organic matter in the KS horizon from the Early Zechstein basin of Poland, whereas contact metamorphic thermal maturation originated in the Early Toarcian PS (Posidonienschiefer) of the North German Vlotho Massif. The δD values of the extracted n-alkanes positively correlate with thermal maturity in the KS (y = 56‰ × MPI1[x] − 160‰ [VSMOW]) and in the PS (y = 104‰ × MPI1[x] − 200‰ [VSMOW]). The δD values of isoprenoids (i.e., pristane, phytane) were even more enriched with increasing maturity (y = 179‰ × MPI1[x] − 341‰ [VSMOW] in the KS; y = 300‰ × MPI1[x] − 415‰ [VSMOW] in PS).These results explain why isotope ratios of n-alkanes and isoprenoids in mature sediments are generally enriched in D and do not have the expected isotopic difference between n-alkanes and isoprenoids of ∼190‰. Moreover, the correlation between sediment maturity parameters and δD values suggests that after correction the δD values of n-alkanes can be used to reconstruct climate and environment in the geological past.  相似文献   
18.
A numerical model of a centrifuge experiment on tunnel located in sand is being presented. The experiment was carried out under seismic loading using a dynamic actuator. The responses of the tunnel and of the sand were measured. The numerical model is based on a hypoplastic constitutive model with intergranular strains implemented in the FE-code TOCHNOG. The calculated accelerations in the sand match the measured results, while the surface settlement and the bending moments in the tunnel lining are only qualitatively reproduced by the numerical model.  相似文献   
19.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   
20.
Reaction textures and fluid inclusions in the~2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses(Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750—800℃and 5.5—6.2 kbar.partial melting,and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650—700℃.These processes caused local variations of water and alkali activity in the fluids,resulting in various mineral assemblages within the dehydration zone.The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO-2-(K,Na)Cl fluids at 750 and 800℃and 5.5 kbar.It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K.Na)Cl fluids is accompanied by partial melting at 750—800℃.Orthopyroxene-bearing assemblages are characteristic for temperature 800℃and are stable in equilibrium with fluids with low salt concentrations,while salt-rich fluids produce clinopyroxene-bearing assemblages.These observations arc in good agreement with the petrological data on the dehydration zones within the Sand River orthoeneisses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号