首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
大气科学   1篇
地球物理   5篇
地质学   26篇
海洋学   4篇
天文学   4篇
自然地理   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1976年   1篇
  1965年   1篇
排序方式: 共有45条查询结果,搜索用时 328 毫秒
11.
12.
As a complement to our efforts to update and revise the thermodynamic basis for predicting garnet-melt trace element partitioning using lattice-strain theory (van Westrenen and Draper in Contrib Mineral Petrol, this issue), we have performed detailed statistical evaluations of possible correlations between intensive and extensive variables and experimentally determined garnet-melt partitioning values for trivalent cations (rare earth elements, Y, and Sc) entering the dodecahedral garnet X-site. We applied these evaluations to a database containing over 300 partition coefficient determinations, compiled both from literature values and from our own work designed in part to expand that database. Available data include partitioning measurements in ultramafic to basaltic to intermediate bulk compositions, and recent studies in Fe-rich systems relevant to extraterrestrial petrogenesis, at pressures sufficiently high such that a significant component of majorite, the high-pressure form of garnet, is present. Through the application of lattice-strain theory, we obtained best-fit values for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). Resulting values of E, D 0, and r 0 were used in multiple linear regressions involving sixteen variables that reflect the possible influence of garnet composition and stoichiometry, melt composition and structure, major-element partitioning, pressure, and temperature. We find no statistically significant correlations between fitted r 0 and E values and any combination of variables. However, a highly robust correlation between fitted D 0 and garnet-melt Fe–Mg exchange and D Mg is identified. The identification of more explicit melt-compositional influence is a first for this type of predictive modeling. We combine this statistically-derived expression for predicting D 0 with the new expressions for predicting E and r 0 outlined in the first of our pair of companion papers into an updated set of formulae that use easy-to-measure quantities (e.g. garnet composition, pressure, temperature) to predict variations in E, r 0, and D 0. These values are used in turn to calculate D values for those garnets. The updated model substantially improves upon a previous model (van Westrenen et al. in Contrib Mineral Petrol 142:219–234, 2001), and accounts well for trivalent cation partitioning in nominally anhydrous systems up to at least 15 GPa, including for eclogitic bulk compositions and for Fe-rich systems appropriate to magmagenesis on the Moon and Mars. The new model is slightly less successful in predicting partitioning with strongly majoritic garnets, although the mismatch is much less than with the original 2001 model. Although it also improves upon the 2001 model in predicting partitioning in hydrous systems, the mismatch between model and observation is still unacceptably large. The same statistical tools were applied in an attempt to predict tetravalent partitioning as well, because lattice-strain based techniques are not applicable to such partitioning. However, no statistically significant predictive relationships emerged from that effort. Our analyses show that future efforts should focus on filling the gap in partitioning data between ∼10 and 25 GPa to evaluate more closely the gradual transition of garnet to majorite, and on systematically expanding the hydrous partitioning database to allow extension of our model to water-bearing systems.  相似文献   
13.
14.
The Trans-Himalaya region boasts an immense biodiversity which includes several threatened species and supports the livelihood of local human populations. Our aim in this study was to evaluate the impact of recent climate change on the biodiversity and human inhabitants of the upper Mustang region of the Trans-Himalaya, Nepal. We found that the average annual temperature in the upper Mustang region has increased by 0.13 °C per year over the last 23 years; a higher annual temperature increase than experienced in other parts of Himalaya. A predictive model suggested that the mean annual temperature will double by 2161 to reach 20 °C in the upper Mustang region. The combined effects of increased temperature and diminished snowfall have resulted in a reduction in the area of land suitable for agriculture. Most seriously affected are Samjung village (at 4,100 m altitude) and Dhey village (at 3,800 m) in upper Mustang, where villagers have been forced to relocate to an area with better water availability. Concurrent with the recent change in climate, there have been substantial changes in vegetation communities. Between 1979 and 2009, grasslands and forests in the Mustang district have diminished by 11 and 42 %, respectively, with the tree line having shifted towards higher elevation. Further, grasses and many shrub species are no longer found in abundance at higher elevations and consequently blue sheep (Pseduois nayaur) move to forage at lower elevations where they encounter and raid human crops. The movement of blue sheep attracts snow leopard (Panthera uncia) from their higher-elevation habitats to lower sites, where they encounter and depredate livestock. Increased crop raiding by blue sheep and depredations of livestock by snow leopard have impacted adversely on the livelihoods of local people.  相似文献   
15.
Crystallization of the Lunar Magma Ocean (LMO) has been numerically modeled and its products inferred from sample observations, but it has never been fully tested experimentally. This study is a reexamination of the LMO hypothesis by means of the first experimental simulation of lunar differentiation. Two end-member bulk Moon compositions are considered: one enriched in refractory lithophile elements relative to Earth and one with no such enrichment. A “two-stage” model of magma ocean crystallization based on geophysical constraints is simulated and features early crystal suspension and equilibrium crystallization followed by fractional crystallization of the residual magma ocean. An initially entirely molten Moon is assumed. Part 1 of this study, presented here, focuses on stage 1 of this model and considers the early cumulates formed by equilibrium crystallization, differences in mantle mineralogy resulting from different bulk Moon compositions, and implications for the source regions of the highlands Mg-suite.Refractory element enriched bulk Moon compositions produce a deep mantle that contains garnet and trace Cr-spinel in addition to low-Ca pyroxene and olivine. In contrast, compositions without refractory element enrichment produce a deep dunitic mantle with low-Ca pyroxene but without an aluminous phase. The differences in bulk composition are magnified in the residual melt; the residual LMO from the refractory element enriched composition will likely produce plagioclase and ilmenite earlier and in greater quantities. Both compositions produce Mg-rich early cumulate piles that extend from the core-mantle boundary to ∼355 km depth, if 50% equilibrium crystallization and whole Moon melting are assumed. These early LMO cumulates provide good fits for the source regions for a component of the high-Mg, Ni- and Co-poor parental magmas of the Mg-suite cumulates, if certain conditions are called upon. The olivine in early LMO cumulates produced by either bulk Moon composition is far too rich in Cr to be reasonable for the source regions of the Mg-suite, meaning either core formation in the presence of S and/or C must be invoked to deplete the LMO and the crystallizing olivine in Cr, or that current estimates of the bulk lunar Cr content are too high. We infer that melts meeting the criteria of the Mg-suite parents could be produced from early LMO cumulates by solid state KREEP and plagioclase hybridization near the base of the crust and subsequent partial melting. Additionally, we propose a revised model for Mg-suite petrogenesis.  相似文献   
16.
An optical polarization map of the starburst galaxy NGC1808 shows that on kpc scales there is a coherent galactic magnetic field which follows the spiral arms on the galaxy. The inner 750pc surrounding the central region shows characteristics of a huge reflection nebula illuminated by the various hotspots within the starburst. This is very similar to the archetypal starburst galaxy M82.  相似文献   
17.
An increase in the population of coastal counties and popularity of coastal beaches as tourism destinations create difficulties for management agencies responsible for providing public beach access. The objective of this paper is to determine non-resident visitors to South Carolina beaches economic value for public beach access. Visitors are willing to pay an extra $6.60 per day for additional beach access points and parking or an aggregate of $93 million. Visitors' economic value of public beach access allows decision-makers the ability to better compare management policies in their efforts to provide sufficient public beach access through a target effective strategy.  相似文献   
18.
Black Hill is a boulder‐strewn residual of norite standing 45 m above the Murray Plains about 80 km northeast of Adelaide. Between the boulders, the crystalline rock has weathered to a dark‐brown terra rossa‐rendzina soil with calcite, illite, kaolin, and hematite as the principal secondary minerals. At one site on the smooth lower slopes of the outcrop, the material above the norite consists of partially weathered granular fragments with considerable dolomite and some calcite in nodular form. Below the surface, the rock has been weathered along joints to produce the clay mineral nontronite, and between each corestone and this plastic clay there is a zone of laminated but essentially unaltered rock 10–25 cm thick. Pieces of amorphous silica occur sporadically in some joints and on the surface.

The dark‐brown soil appears to be related to the present environment but the nontronite in the joint weathering, the dolomite, and the amorphous silica are all consistent with the norite having been inundated, possibly during the Miocene marine transgression.

Calculations based on the retention of elements such as aluminium, potassium, titanium, and iron have been used to predict quantitatively the amount of certain minerals such as quartz, calcite, and dolomite introduced to the weathering profiles.  相似文献   
19.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   
20.
Iron coordination and redox reactions in synthetic and coastal seawater were investigated at nanomolar concentrations using 59Fe radiometry and ion-pair solvent extraction of iron chelated by sulfoxine (8-hydroxyquinoline-5-sulfonate) and BPDS (bathophenanthroline disulfonate). Using sulfoxine, we determined the rate at which the monomeric Fe(III) hydroxide species present in seawater of pH 8 are complexed by the microbial siderophore deferriferrioxamine B and the synthetic chelator EDTA (ethylenediaminetetraacetic acid). Forward rate constants of 2 × 106M−1s−1 and 20 M−1s−1, respectively, were obtained. The kinetics of these reactions have not been measured previously at pH values near that of seawater. Conditional equilibrium constants measured for the Fe(III)-EDTA system are consistent with published stability constants for EDTA complexes and for Fe(III) hydrolytic equilibria minus the neutral Fe(OH)3o species, suggesting it is not quantitatively significant near pH 8. Commercial humic acid was found to have sufficient affinity for iron to compete with Fe(III) hydrolysis in seawater, and limited evidence was obtained for an interaction with dissolved organic matter in coastal seawater.In our investigations of redox reactions using BPDS to trap Fe(II) produced in the medium, we observed enhanced photoreduction of Fe(III) by humic acid as well as reduction induced by solutes released from phytoplankton in seawater of pH 8. Although the method is sensitive enough to work at near-oceanic levels of iron, the difficulty in distinguishing Fe(II) generated by Fe(III)-BPDS interactions from Fe(II) produced by other means limits its utility. This analytical ambiguity may be generalizable to other methods which measure ferrous iron in seawater using Fe(II)-specific ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号