In order to realize the significance of oak forests for ecology and economy of the Himalayan region,the present study attempts to objectively characterize disturbance intensities and their impacts on compositional features of identified Oak forests, i.e.Banj-oak(Quercus leucotrichophora A.Camus), Tilonj-oak(Q.floribunda Lindley)and Kharsu-oak(Q. semecarpifolia J.E.Smith)in west Himalaya. Amongst studied forests,Q.leucotrichophora and Q. semecarpifolia forests exhibited high sensitivity towards disturbance intensities.In both forests, increasing level of disturbance significantly lowered tree density,dominance and natural recruitment (seedling and sapling density).Q.floribunda forests, however,appeared relatively more resilient to anthropogenic disturbances.Amongst studied oak forests,Q.semecarpifolia forests with overall poor natural regeneration are in a most critically endangered demographic state.However,a slightly improved regeneration(i.e.,seedling density)in moderately disturbed plots is indicative that such plots may be utilized most suitably for in situ revival of these forests.Effect of disturbance intensities on tree population is an important subject for forest ecology and management and the present study highlights a need for adopting different management strategies across disturbance intensities in diverse oak forests of west Himalaya. 相似文献
Summary An approach to the determination of methane content of coal seams is proposed. The method utilizes the transformed Airey's empirical equation on desorption of methane from coals. The methane content values estimated by this method correspond well with actual values from laboratory experiments. In the case of Indian coals, the applicability of the
relationship for the calculation of the gas lost from coal lumps during long periods of time loss appears to be limited due to poor agreement with the experimental values. 相似文献
In the present study, a widely used reactive dye, Color Index (C.I.) Reactive Blue 268 was utilized for mycoremediation by Aspergillus fumigatus isolated from textile effluent. Complete decolorization of the test dye (0.1 g L?1) was recorded within 6 days of static incubation at 27 °C in Czapek Dox broth (CDB). However, the isolate was unable to utilize the dye as a sole source of energy in Czapek Dox agar and CDB in absence of sucrose and obligate requirement of a labile carbon source, i.e., sucrose needed for induction of decolorization. Biosorption seems to play the pivotal role in decolorization as evident by coloring of the fungal biomass as that of dye color. The optimal conditions for the highest decolorization were found at 30 °C and pH 6.0 with 6-day-old inoculums supplemented with sucrose (10 g L?1) and ammonium chloride (2 g L?1) as a carbon and nitrogen source, respectively. The response of the isolate to increasing dye concentrations was found to be growth inhibitory. Surprisingly, about 65 % of dye decolorization was recorded with heat-inactivated biomass powder within 6 days of static incubation supporting the fact of fungal biosorption. Results of this study have established the candidature of the isolate for biotechnological removal of dyes from disreputable dying effluents. 相似文献
The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher‐order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter‐expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness. 相似文献
In this paper the duskward extension of the westward auroral electrojet is investigated for substorm intervals on the basis
of magnetograms recorded at the Indian Antarctic station, Maitri. The database comprises three years from 1998–2000. Based
on an initial study of the magnetograms, an arbitrary local time of 2030 MLT is fixed to define the early manifestation of
the substorm westward electrojet. Using this criterion 12 substorms are identified and the possible causes examined. Many
of these events are observed to be associated with a moderate to intense ring current. The hourly average of the GSM BY-component of the interplanetary magnetic field (IMF) for the hour preceding the substorm onset at Maitri is negative for
most of the events. It is suggested that the azimuthal shift of the auroral electrojets in the southern hemisphere resulting
from a negative BY-component of the IMF influences the extent of the substorm westward electrojet. This finding implies that the IMF may have
a role in controlling the longitudinal extent of substorm occurrence. 相似文献
The Indian sub-continent being located in the heart of the summermonsoon belt, receives in most parts more than 75% of its annual rainfall during the fourmonsoon months of June to September. As the bulk of summer monsoon rainfall occurs withina period of four months, naturally majority of floods occur in Indian rivers during thisseason only. The ground conditions also help in generating high percentage of run-offbecause of the antecedent wet conditions caused by rainy spells occurring within the monsoonperiod itself. Besides mentioning different weather systems, which cause heavy rainfall and consequentfloods, a detailed discussion of 15 years' floods in different river systems has alsobeen given in the article. This study has shown that the flood problem in India is mostly confinedto the states located in the Indo-Gangetic plains, northeast India and occasionally in therivers of Central India. 相似文献
Any sustainable resource utilization plan requires evaluation of the present and future environmental impact. The present research focuses on future scenario generation of environmental vulnerability zones based on grey analytic hierarchy process (grey-AHP). Grey-AHP combines the advantages of grey clustering method and the classical analytic hierarchy process (AHP). Environmental vulnerability index (EVI) considers twenty-five natural, environmental and anthropogenic parameters, e.g. soil, geology, aspect, elevation, slope, rainfall, maximum and minimum temperature, normalized difference vegetation index, drainage density, groundwater recharge, groundwater level, groundwater potential, water yield, evapotranspiration, land use/land cover, soil moisture, sediment yield, water stress, water quality, storage capacity, land suitability, population density, road density and normalized difference built-up index. Nine futuristic parameters were used for EVI calculation from the Dynamic Conversion of Land-Use and its Effects, Model for Interdisciplinary Research on Climate 5 and Soil and Water Assessment Tool. The resulting maps were classified into three classes: “high”, “moderate” and “low”. The result shows that the upstream portion of the river basin comes under the high vulnerability zone for the years 2010 and 2030, 2050. The effectiveness of zonation approach was between “better” and “common” classes. Sensitivity analysis was performed for EVI. Field-based soil moisture point data were utilized for validation purpose. The resulting maps provide a guideline for planning of detailed hydrogeological studies.