首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   15篇
  国内免费   7篇
测绘学   12篇
大气科学   28篇
地球物理   122篇
地质学   182篇
海洋学   32篇
天文学   54篇
综合类   4篇
自然地理   32篇
  2023年   3篇
  2021年   7篇
  2020年   8篇
  2019年   13篇
  2018年   18篇
  2017年   13篇
  2016年   16篇
  2015年   14篇
  2014年   25篇
  2013年   27篇
  2012年   15篇
  2011年   23篇
  2010年   26篇
  2009年   31篇
  2008年   17篇
  2007年   18篇
  2006年   21篇
  2005年   11篇
  2004年   9篇
  2003年   15篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1969年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
101.
Remote sensing of the ice cover in Storfjorden (Svalbard) revealed the persistence and evolution of latent heat polynyas during the winter of 1997/98. Latent heat polynyas open mechanically under wind stress or ocean currents that transport the ice cover away. In the present work we used mathematical modelling to simulate the Storfjorden polynya size and geometry caused by wind stress, measured at the meteorological station on the island of Hopen in winter 1997/98. The dependence of the polynya outlines on the wind velocity is presented. Two approaches were used: quasi-static and dynamic. Quasi-static simulations are based on a time-independent, linear ice stress-strain relationship valid for the low strain rates only. Time dependence of the ice cover fracture is joined with stress-strain nonlinearity caused by ice delayed-elastic recovery and viscosity. Results are compared to satellite observations from the synthetic aperture radar (SAR) of ERS-2. The simulation results show that a northern wind opens a larger polynya (ca. 30%) than does a north-eastern wind with the same speed. The results also indicate that the bathymetry and geometry of the fjord might have a stronger influence on the polynya opening and development than the location of individual islands and reefs.  相似文献   
102.
103.
Flash-flood events resulting from paroxystic meteorological events concentrated in time and space are insufficiently documented as they produce destructive effects. They are hardly measurable and present single features that are not transposable to another event. In the South of France, the flash flood of November 1999 gives a perfect illustration of these characteristics. The physical complexity of the process and consequently the volume and the variety of the data to take into account are incompatible with the real time constraint allocated to the forecasters confronted to the occurrence of such phenomena. So, we have to make choices to afford acceptable simplifications to the complete mechanical model. MARINE (‘Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évéNements Extrêmes’) is the operational and robust tool we developed for flash-flood forecasting. This model complies with the criterions of real-time simulation. It is a physically based distributed model composed of two parts: first the flood runoff process simulation in the upstream part of the basin modelled from a rainfall–runoff approach, then the flood propagation in the main rivers described by the Saint-Venant equations. It integrates remote sensed data – Digital Elevation Model, land-use map, hydrographic network for the observations from satellites and the rainfall evolution from meteorological radar. The main goal of MARINE is to supply real time pertinent information to the forecasters. Results obtained on the Orbieu River (Aude, France) show that this model is able to supply pertinent flood hydrograph with a sufficient precision for the forecasting service to take the appropriate safety decisions. Furthermore, MARINE has already been tested in the French National Flood Forecasting Service of Haute-Garonne in real conditions. To cite this article: V. Estupina Borrell et al., C. R. Geoscience 337 (2005).  相似文献   
104.
The southwest Indian Ocean (5°–20°S, 45°–70°E) experiences frequent tropical cyclones (TC) in the December–March season. In this paper, TC composite and case-study structure and impacts are studied using daily oceanic and atmospheric fields from model-reanalyzed data, satellite remote sensing, and in situ station data. The TC environment is characterized according to mean track: W-, SW-, and S-moving. Case studies of TC are investigated, and impacts such as storm surge and rainfall are evaluated through comparison of ‘real’ and ‘model’ datasets in the period since 1998. The northern sub-tropical jet stream is found to influence the intensity and track of TC in the SWIO. The composite SW-moving TC maintains intensity compared to the other tracks, which decline in strength. Variability is found in TC rainfall distribution, with maximum intensity in a spiral band 1–2 days before peak intensity, based on satellite estimates. There is a re-establishment of equatorial rainfall in the case of southward moving TC after peak intensity. The W-moving TC lacks monsoon inflow compared to the recurving TC. Comparisons are made between low-resolution model-estimated rainfall, various satellite products, and station-observed rainfall. TC spiral rain-band intensity is found to be similar to that reported elsewhere in the tropics, based on a limited sample of TRMM PR data and station reports. The satellite-derived daily rainfall out-performs NCEP reanalysis due to low resolution and underestimated diabatic heating. Similarly, the circulation within a 300-km radius of the composite TC is poorly resolved by re-analysis; winds, swells, and storm surges are too low by a factor of two compared with QuikSCAT and in situ measurements. This work will offer ways to adjust operational forecasts of winds, rainfall, and swells around tropical cyclones, so that TC risk and impacts are better managed.  相似文献   
105.
Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition. At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart, respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures. The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas. However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte district to a single metallogenic event with a common source of metals.  相似文献   
106.
This study describes the origin and age of a body of massive ground ice exposed in the headwall of a thaw slump in the Red Creek valley, central Yukon, Canada. The site is located beyond the limits of Pleistocene glaciation in central Yukon and within the southern limit of the modern continuous permafrost zone. The origin of the massive ground ice, which is preserved under a fine-grained diamicton containing thin layers of tephra, was determined through ice petrography, stable O-H isotope composition of the ice, and gas composition of occluded air entrapped in the ice. The age of the massive ground ice was established by identifying the overlying tephra and radiocarbon dating of a “muck” deposit preserved within the ice. Collectively, the results indicate that the massive ground ice formed by snow densification with limited melting-refreezing and is interpreted as being a buried perennial snowbank. The muck deposit within the ice, which yielded an age of 30,720 ± 340 14C a BP, and the Dawson tephra (25,300 14C a BP) overlying the perennial snowbank, indicates that the snowbank accumulated at roughly the transition between marine isotope stages 3 and 2. Dry climatic conditions at this time and possibly high winds enabled the snowbank to accumulate in the absence of extensive local valley glaciation as occurred in the mountains to the south. In addition to documenting the persistence of relict permafrost and ground ice to warming climate in regions where they are predicted to disappear by numerical models, this study presents evidence of an isotopic biosignature preserved in a body of massive ground ice.  相似文献   
107.
The multivariate variogram and the multivariate covariogram are used as spatial weighting functions for forming spatially homogeneous groups automatically. The groups are created after either deflating similarities between distant samples with the multivariate covariogram or by inflating dissimilarities between distant samples with the multivariate variogram. These approaches can be seen as generalization of the Oliver and Webster proposal. Two data sets show the efficiency of the two weighting functions when compared to the classical approach which does not take spatial information into account. In one case study, the weighting of similarities by the multivariate covariogram showed more interpretable results than the weighting of dissimilarities by the multivariate variogram.  相似文献   
108.
The annual cycle of the thickness and temperature of landfast sea ice in the East Siberian Sea has been examined using a one-dimensional thermodynamic model. The model was calibrated for the year Augus...  相似文献   
109.
Existing GIS‐based least‐cost routefinding approaches can in some cases be confounded by linear features in the landscape whose crossing costs are high relative to other traversing costs found throughout the landscape. Unfortunately, such high‐cost linear features are not uncommon; they frequently occur in the form of hydrologic features whose crossing costs are high relative to costs of traversing the surrounding dry land. This study (1) enumerates the situations where existing approaches can fail, (2) proposes a simple method for overcoming the limitations of the existing approaches, and (3) conducts an experiment to assess the impact of the weaknesses of existing approaches and the magnitude of the differences between the results produced by existing and revised approaches. Our results show that in mountainous terrain, linear hydrologic features with high crossing costs can have a profound impact on least‐cost routes, and the choice of solution method has equally profound impacts on the optimal route produced by the analysis.  相似文献   
110.
Understanding catchment functioning is increasingly important to enable water resources to be quantified and used sustainably, flood risk to be minimized, as well as to protect the system from degradation by pollution. Developing conceptual understanding of groundwater systems and their encapsulation in models is an important part of this understanding, but they are resource intensive to create and calibrate. The relative lack of data or the particular complexity of a groundwater system can prevent the development of a satisfactory conceptual understanding of the hydrological behaviour, which can be used to construct an adequate distributed model. A time series of daily groundwater levels from the Permo-Triassic sandstones situated in the River Eden Valley, Cumbria, UK have been analysed. These hydrographs show a range of behaviours and therefore have previously been studied using statistical and time series analysis techniques. This paper describes the application of AquiMOD, impulse response function (IRF) and combined AquiMOD-IRF methods to characterize the daily groundwater hydrographs. The best approach for each characteristic type of response has been determined and related to the geological and hydrogeological framework found at each borehole location. It is clear that AquiMOD, IRF and a combination of AquiMOD with IRF can be deployed to reproduce hydrograph responses in a range of hydrogeological settings. Importantly the choice of different techniques demonstrates the influence of differing processes and hydrogeological settings. Further they can distinguish the influences of differing hydrogeological environments and the impacts these have on the groundwater flow processes. They can be used, as shown in this paper, in a staged approach to help develop reliable and comprehensive conceptual models of groundwater flow. This can then be used as a solid basis for the development of distributed models, particularly as the latter are resource expensive to build and to calibrate effectively. This approach of using simple models and techniques first identifies specific aspects of catchment functioning, for example influence of the river, that can be later tested in a distributed model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号