首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   8篇
测绘学   4篇
大气科学   22篇
地球物理   76篇
地质学   119篇
海洋学   34篇
天文学   50篇
综合类   2篇
自然地理   44篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   7篇
  2011年   18篇
  2010年   14篇
  2009年   9篇
  2008年   14篇
  2007年   12篇
  2006年   19篇
  2005年   9篇
  2004年   14篇
  2003年   12篇
  2002年   14篇
  2001年   12篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   6篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1938年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
11.
Of the terrestrial planets, Earth and probably Mercury possess substantial intrinsic magnetic fields generated by core dynamos, while Venus and Mars apparently lack such fields. Thermal histories are calculated for these planets and are found to admit several possible present states, including those which suggest simple explanations for the observations; whule the cores of Earth and Mercury are continuing to freeze, the cores of Venus and Mars may still be completely liquid. The models assume whole mantle convection, which is parameterized by a simple Nusselt-Rayleigh number relation and dictates the rate at which heat escapes from the core. It is found that completely fluid cores, devoid of intrinsic heat sources, are not likely to sustain thermal convection for the age of the solar system but cool to a subadiabatic, conductive state that can not maintain a dynamo. Planets which nucleate an inner core continue to sustain a dynamo because of the gravitational energy release and chemically driven convection that accompany inner core growth. The absence of a significant inner core can arise in Venus because of its slightly higher temperature and lower central pressure relative to Earth, while a Martian core avoids the onset of freezing if the abundance of sulfur in the core is ?15% by mass. All of the models presented assume that (I) core dynamos are driven by thermal and/or chemical convection; (ii) radiogenic heat production is confined to the mantle; (iii) mantle and core cool from initially hot states which are at the solidus and superliquidus, respectively; and (iv) any inner core excludes the light alloying material (sulfur or oxygen) which then mixes uniformly upward through the outer core. The models include realistic pressure and composition-dependent freezing curves for the core, and material parameters are chosen so that the correct present-day values of heat outflow, upper mantle temperature and viscosity, and inner core radius are obtained for the earth. It is found that Venus and Mars may have once had dynamos maintained by thermal convection alone. Earth may have had a completely fluid core and a dynamo maintained by thermal convection for the first 2 to 3 by, but an inner core nucleates and the dynamo energetics are subsequently dominated by gravitational energy release. Complete freezing of the Mercurian core is prohibited if it contains even a small amount of sulfur, and a dynamo can be maintained by chemical convection in a thin, fluid shell.  相似文献   
12.
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar?Cheliospheric?Cplanetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March??C?16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth??s mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.  相似文献   
13.
We compare the moment of inertia (MOI) of a simple hydrostatic, two layer body as determined by the Radau–Darwin Approximation (RDA) to its exact hydrostatic MOI calculated to first order in the parameter q = Ω2R3/GM, where Ω, R, and M are the spin angular velocity, radius, and mass of the body, and G is the gravitational constant. We show that the RDA is in error by less than 1% for many configurations of core sizes and layer densities congruent with those of solid bodies in the Solar System. We then determine the error in the MOI of icy satellites calculated with the RDA due to nonhydrostatic effects by using a simple model in which the core and outer shell have slight degree 2 distortions away from their expected hydrostatic shapes. Since the hydrostatic shape has an associated stress of order ρΩ2R2 (where ρ is density) it follows that the importance of nonhydrostatic effects scales with the dimensionless number σ/ρΩ2R2, where σ is the nonhydrostatic stress. This highlights the likely importance of this error for slowly rotating bodies (e.g., Titan and Callisto) and small bodies (e.g., Saturn moons other than Titan). We apply this model to Titan, Callisto, and Enceladus and find that the RDA-derived MOI can be 10% greater than the actual MOI for nonhydrostatic stresses as small as ∼0.1 bars at the surface or ∼1 bar at the core–mantle boundary, but the actual nonhydrostatic stresses for a given shape change depends on the specifics of the interior model. When we apply this model to Ganymede we find that the stresses necessary to produce the same MOI errors as on Titan, Callisto, and Enceladus are an order of magnitude greater due to its faster rotation, so Ganymede may be the only instance where RDA is reliable. We argue that if satellites can reorient to the lowest energy state then RDA will always give an overestimate of the true MOI. Observations have shown that small nonhydrostatic gravity anomalies exist on Ganymede and Titan, at least at degree 3 and presumably higher. If these anomalies are indicative of the nonhydrostatic anomalies at degree 2 then these imply only a small correction to the MOI, even for Titan, but it is possible that the physical origin of nonhydrostatic degree 2 effects is different from the higher order terms. We conclude that nonhydrostatic effects could be present to an extent that allows Callisto and Titan to be fully differentiated.  相似文献   
14.
We present high-resolution spectro-astrometry of a sample of 28 Herbig Ae/Be and three F-type pre-main-sequence stars. The spectro-astrometry, which is essentially the study of unresolved features in long-slit spectra, is shown from both empirical and simulated data to be capable of detecting binary companions that are fainter by up to 6 mag at separations larger than ∼0.1 arcsec. The nine targets that were previously known to be binary are all detected. In addition, we report the discovery of six new binaries and present five further possible binaries. The resulting binary fraction is 68 ± 11 per cent. This overall binary fraction is the largest reported for any observed sample of Herbig Ae/Be stars, presumably because of the exquisite sensitivity of spectro-astrometry for detecting binary systems. The data hint that the binary frequency of the Herbig Be stars is larger than that of the Herbig Ae stars. The Appendix presents model simulations to assess the capabilities of spectro-astrometry and reinforces the empirical findings. Most spectro-astrometric signatures in this sample of Herbig Ae/Be stars can be explained by the presence of a binary system. Two objects, HD 87643 and Z CMa, display evidence for asymmetric outflows. Finally, the position angles of the binary systems have been compared with available orientations of the circumprimary disc and these appear to be coplanar. The alignment between the circumprimary discs and the binary systems strongly suggests that the formation of binaries with intermediate-mass primaries is due to fragmentation as the alternative, stellar capture, does not naturally predict aligned discs. The alignment extends to the most massive B-type stars in our sample. This leads us to conclude that formation mechanisms that do result in massive stars, but predict random angles between the binaries and the circumprimary discs, such as stellar collisions, are also ruled out for the same reason.  相似文献   
15.
During the Near-Earth Asteroid Rendezvous (NEAR) spacecraft's investigation of asteroid 433 Eros, inflight calibration measurements from the multispectral imager (MSI) have provided refined knowledge of the camera's radiometric performance, pointing, and light-scattering characteristics. Measurements while at Eros corroborate most earlier calibration results, although there appears to be a small, gradual change in instrument dark current and flat field due to effects of aging in the space environment. The most pronounced change in instrument behavior, however, is a dramatic increase in scattered light due to contaminants accumulated on the optics during unscheduled fuel usage in December 1998. Procedures to accurately quantify and to remediate the scattered light are described in a companion paper (Li et al. 2002, Icarus155, 00-00). Acquisition of Eros measurements has clarified the relative, filter-to-filter, radiometric performance of the MSI. Absolute radiometric calibration appears very well constrained from flight measurements, with an accuracy of ∼5%. Pointing relative to the spacecraft coordinate system can be determined from the temperature of the spacecraft deck with an accuracy of ∼1 pixel.  相似文献   
16.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   
17.
Solid CO2 is observed to be an abundant interstellar ice component towards both quiescent clouds and active star-forming regions. Our recent models of gas–grain chemistry, appropriate for quiescent regions, severely underproduce solid CO2 at the single assumed gas density and temperature. In this paper, we investigate the sensitivity of our model results to changes in these parameters. In addition, we examine how the nature of the grain surface affects the results and also consider the role of the key surface reaction between O and CO. We conclude that the observed high abundance of solid CO2 can be reproduced at reasonable temperatures and densities by models with diffusive surface chemistry, provided that the diffusion of heavy species such as O occurs efficiently.  相似文献   
18.
Landslide susceptibility assessment plays a vital role in understanding landslide information in advance and taking preventive as well as control measures.The n...  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号