首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8525篇
  免费   335篇
  国内免费   128篇
测绘学   165篇
大气科学   709篇
地球物理   2001篇
地质学   3014篇
海洋学   797篇
天文学   1235篇
综合类   37篇
自然地理   1030篇
  2022年   32篇
  2021年   114篇
  2020年   153篇
  2019年   156篇
  2018年   202篇
  2017年   195篇
  2016年   240篇
  2015年   200篇
  2014年   260篇
  2013年   472篇
  2012年   283篇
  2011年   409篇
  2010年   375篇
  2009年   474篇
  2008年   397篇
  2007年   407篇
  2006年   340篇
  2005年   292篇
  2004年   282篇
  2003年   300篇
  2002年   239篇
  2001年   200篇
  2000年   219篇
  1999年   164篇
  1998年   149篇
  1997年   132篇
  1996年   144篇
  1995年   131篇
  1994年   124篇
  1993年   101篇
  1992年   100篇
  1991年   68篇
  1990年   97篇
  1989年   78篇
  1988年   84篇
  1987年   94篇
  1986年   84篇
  1985年   110篇
  1984年   131篇
  1983年   122篇
  1982年   105篇
  1981年   77篇
  1980年   57篇
  1979年   71篇
  1978年   67篇
  1977年   61篇
  1976年   61篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有8988条查询结果,搜索用时 437 毫秒
281.
David Manley 《Area》2004,36(1):92-93
  相似文献   
282.
Linear correlations between seasonal and inter-annual measures of meteorological variables and normalized difference vegetation index (NDVI) are calculated at six nearby yet distinct vegetation communities in semi-arid New Mexico, USA Monsoon season (June–September) precipitation shows considerable positive correlation with NDVI values from the contemporaneous summer, following spring, and following summer. Non-monsoon precipitation (October–May), temperature, and wind display both positive and negative correlations with NDVI values. These meteorological variables influence NDVI variability at different seasons and time lags. Thus vegetation responds to short-term climate variability in complex ways and serves as a source of memory for the climate system.  相似文献   
283.
Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37–25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.  相似文献   
284.
285.
286.
Estimating severity of liquefaction-induced damage near foundation   总被引:1,自引:2,他引:1  
An empirical procedure for estimating the severity of liquefaction-induced ground damage at or near foundations of existing buildings is established. The procedure is based on an examination of 30 case histories from recent earthquakes. The data for these case histories consist of observations of the damage that resulted from liquefaction, and the subsurface soil conditions as revealed by cone penetration tests. These field observations are used to classify these cases into one of three damaging effect categories, ‘no damage’, ‘minor to moderate damage’, and ‘major damage’. The potential for liquefaction-induced ground failure at each site is calculated and expressed as the probability of ground failure. The relationship between the probability of ground failure and the damage class is established, which allows for the evaluation of the severity of liquefaction-induced ground damage at or near foundations. The procedure presented herein represents a significant attempt to address the issue of liquefaction effect. Caution must be exercised, however, when using the proposed model and procedure for estimating liquefaction damage severity, because they are developed based on limited number of case histories.  相似文献   
287.
We have examined the evidence presented by Labat et al. and found that (1) their claims for a 4% increase in global runoff arising from a 1 °C increase in air temperature and (2) that their article provides the “first experimental data-based evidence demonstrating the link between the global warming and the intensification of the global hydrological cycle” are not supported by the data presented. Our conclusions are based on the facts that (1) their discharge records exhibit non-climatic influences and trends, (2) their work cannot refute previous studies finding no relation between air temperature and runoff, (3) their conclusions cannot explain relations before 1925, and (4) the statistical significance of their results hinges on a single data point that exerts undue influence on the slope of the regression line. We argue that Labat et al. have not provided sufficient evidence to support their claim for having detected increases in global runoff resulting from climate warming.  相似文献   
288.
This article introduces the SVG (salt‐velocity gauge), a novel automated technique for measuring flow velocity by means of salt tracing. SVG allows a high measuring rate (up to one every 2 seconds), short control section length (down to 10 cm), high accuracy (+[sol ]?1·5 cm s?1), and unbiased calculation of the mean velocity in experimental conditions with turbulent, supercritical flow. A few cubic centimetres of saturated salt solution (NaCl) are injected into the flow at regular time intervals using a programmable solenoid valve. The tracer successively passes two conductivity probes placed a short distance downstream. The transformation of the signal between the two probes is modelled as a one‐dimensional diffusion wave equation. Model calibration gives an estimation of the mean velocity and the diffusion for each salt plume. Two implementations of the SVG technique are described. The first was an outdoors simulated rainfall experiment in Senegal (conductivity probes at 40 cm apart, 8 Hz measurement rate, salt injections at 10 second intervals). Mean velocity was estimated to range between 0·1 and 0·3 m s?1. The second was a laboratory‐based flume experiment (conductivity probes at 10 cm apart, 32 Hz, salt injections at 2 second intervals). Another SVG with probes at 34 cm apart was used for comparison. An acoustic Doppler velocimeter (ADV) was also used to give an independent assessment of velocity. Using the 10 cm salt gauge, estimated mean velocity ranged from 0·6 to 0·9 m s?1 with a standard deviation of 1·5 cm s?1. Comparisons between ADV, 10 cm SVG and 34 cm SVG were consistent and demonstrated that the salt‐tracing results were unbiased and independent of distance between probes. Most peaks were modelled with r2 > 90 per cent. The SVG technology offers an alternative to the dye‐tracing technique, which has been severely criticized in the literature because of the wide interval of recommended values for the correction factor α to be applied to the timings. This article demonstrates that a fixed value of α is inappropriate, since the correction factor varies with velocity, diffusion and the length of the control section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
289.
We present semi-analytical solutions for suspended sediment concentration (SSC) and residual sediment transport in a simple mathematical model of a short tidal embayment. These solutions allow us to investigate in some detail the characteristic tidal and semi-tidal variation of SSC and the processes leading to residual sediment transport, including settling and scour lags, the roles of ‘local’ and ‘advective’ contributions, and the presence of internally or externally generated overtides. By interpreting the transport mechanisms in terms of the classic conceptual models of settling lag we clarify how these models may be expressed in mathematical terms. Our results suggest that settling lag is usually a more important process than scour lag, and that a local model which neglects advection may predict the direction of net sediment transport incorrectly. Finally, we discuss our results in the context of other transport processes and morphodynamic feedback.  相似文献   
290.
The viscosity of synthetic peridotite liquid has been investigated at high pressures using in-situ falling sphere viscometry by combining a multi-anvil technique with synchrotron radiation. We used a newly designed capsule containing a small recessed reservoir outside of the hot spot of the heater, in which a viscosity marker sphere is embedded in a forsterite + enstatite mixture having a higher solidus temperature than the peridotite. This experimental setup prevents spheres from falling before a stable temperature above the liquidus is established and thus avoids difficulties in evaluating viscosities from velocities of spheres falling through a partially molten sample.

Experiments have been performed between 2.8 and 13 GPa at temperatures ranging from 2043 to 2523 K. Measured viscosities range from 0.019 (± 0.004) to 0.13 (± 0.02) Pa s. At constant temperature, viscosity increases with increasing pressure up to  8.5 GPa but then decreases between  8.5 and 13 GPa. The change in the pressure dependence of viscosity is likely associated with structural changes of the liquid that occur upon compression. By combining our results with recently published 0.1 MPa peridotite liquid viscosities [D.B. Dingwell, C. Courtial, D. Giordano, A. Nichols, Viscosity of peridotite liquid, Earth Planet. Sci. Lett. 226 (2004) 127–138.], the experimental data can be described by a non-Arrhenian, empirical Vogel-Fulcher-Tamman equation, which has been modified by adding a term to account for the observed pressure dependence of viscosity. This equation reproduces measured viscosities to within 0.08 log10-units on average. We use this model to calculate viscosities of a peridotitic magma ocean along a liquid adiabat to a depth of  400 km and discuss possible effects on viscosity at greater pressures and temperatures than experimentally investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号