首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   33篇
  国内免费   13篇
测绘学   70篇
大气科学   45篇
地球物理   184篇
地质学   288篇
海洋学   50篇
天文学   197篇
综合类   4篇
自然地理   48篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   24篇
  2017年   35篇
  2016年   25篇
  2015年   17篇
  2014年   30篇
  2013年   42篇
  2012年   34篇
  2011年   55篇
  2010年   44篇
  2009年   47篇
  2008年   43篇
  2007年   35篇
  2006年   54篇
  2005年   29篇
  2004年   28篇
  2003年   20篇
  2002年   32篇
  2001年   20篇
  2000年   18篇
  1999年   12篇
  1998年   10篇
  1997年   13篇
  1996年   5篇
  1995年   9篇
  1994年   13篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   10篇
  1987年   4篇
  1985年   9篇
  1984年   10篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   10篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   5篇
  1974年   5篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1962年   3篇
  1961年   3篇
排序方式: 共有886条查询结果,搜索用时 484 毫秒
131.
Mapping nonlinear shallow-water tides: a look at the past and future   总被引:1,自引:1,他引:0  
Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems. In memory of Christian Le Provost  相似文献   
132.
Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.  相似文献   
133.
We consider the scenario in which the presence of ammonia in the bulk composition of Enceladus plays a pivotal role in its thermochemical evolution. Because ammonia reduces the melting temperature of the ice shell by 100 K below that of pure water ice, small amounts of tidal dissipation can power an “ammonia feedback” mechanism that leads to secondary differentiation of Enceladus within the ice shell. This leads to compositionally distinct zones at the base of the ice shell arranged such that a layer of lower density (and compositionally buoyant) pure water ice underlies the undifferentiated ammonia-dihydrate ice layer above. We then consider a large scale instability arising from the pure water ice layer, and use a numerical model to explore the dynamics of compositional convection within the ice shell of Enceladus. The instability of the layer can easily account for a diapir that is hemispherical in scale. As it rises to the surface, it co-advects the warm internal temperatures towards the outer layers of the satellite. This advected heat facilitates the generation of a subsurface ocean within the ice shell of Enceladus. This scenario can simultaneously account for the origin of asymmetry in surface deformation observed on Enceladus as well as two global features inferred to exist: a large density anomaly within the interior and a subsurface ocean underneath the south polar region.  相似文献   
134.
In a novel approach to studying viscous accretion flows, viscosity has been introduced as a perturbative effect, involving a first-order correction in the α-viscosity parameter. This method reduces the problem of solving a second-order non-linear differential equation (Navier–Stokes equation) to that of an effective first-order equation. Viscosity breaks down the invariance of the equilibrium conditions for stationary inflow and outflow solutions, and distinguishes accretion from wind. Under a dynamical systems classification, the only feasible critical points of this 'quasi-viscous' flow are saddle points and spirals. On large spatial scales of the disc, where a linearized and radially propagating time-dependent perturbation is known to cause a secular instability, the velocity evolution equation of the quasi-viscous flow has been transformed to bear a formal closeness with Schrödinger's equation with a repulsive potential. Compatible with the transport of angular momentum to the outer regions of the disc, a viscosity-limited length-scale has been defined for the full spatial extent over which the accretion process would be viable.  相似文献   
135.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
136.
Chromite is the only common meteoritic mineral surviving long-term exposure on Earth, however, the present study of relict chromite from numerous Ordovician (470 Ma) fossil meteorites and micrometeorites from Sweden, reveals that when encapsulated in chromite, other minerals can survive for hundreds of millions of years maintaining their primary composition. The most common minerals identified, in the form of small (<1-10 μm) anhedral inclusions, are olivine and pyroxene. In addition, sporadic merrillite and plagioclase were found.Analyses of recent meteorites, holding both inclusions in chromite and corresponding matrix minerals, show that for olivine and pyroxene inclusions, sub-solidus re-equilibration between inclusion and host chromite during entrapment has led to an increase in chromium in the former. In the case of olivine, the re-equilibration has also affected the fayalite (Fa) content, lowering it with an average of 14% in inclusions. For Ca-poor pyroxene the ferrosilite (Fs) content is more or less identical in inclusions and matrix. By these studies an analogue to the commonly applied classification system for ordinary chondritic matrix, based on Fa in olivine and Fs in Ca-poor pyroxene, can be established also for inclusions in chromite. All olivine and Ca-poor pyroxene inclusions (>1.5 μm) in chromite from the Ordovician fossil chondritic material plot within the L-chondrite field, which is in accordance with previous classifications. The concordance in classification together with the fact that inclusions are relatively common makes them an accurate and useful tool in the classification of extraterrestrial material that lacks matrix silicates, such as fossil meteorites and sediment-dispersed chromite grains originating primarily from decomposed micrometeorites but also from larger impacts.  相似文献   
137.
138.
We study the effects of temperature on strange stars. It is found that the maximum mass of the star decreases with the increase of temperature, as at high temperatures the equations of state become softer. Moreover, if the temperature of a strange star increases, keeping its baryon number fixed, its gravitational mass increases and its radius decreases. This leads to a limiting temperature, where it turns into a black hole. These features are the result of a combined effect of the change of gluon mass and the quark distribution with temperature. We report on a new type of radial oscillation of strange stars, driven by what we call 'chromothermal' instability. We also discuss the relevance of our findings in the astrophysics of core collapse supernovae and gamma-ray bursts.  相似文献   
139.
Kīlauea is the youngest of five basaltic shield volcanoes on the island of Hawai’i. It is located to the south‐east of the much larger Mauna Loa volcano, and rose above sea level about 100 ka ago. Kīlauea is one of the most monitored, and arguably the best understood volcanoes on Earth, providing scientists with a good understanding of its current eruption, in which magma rises from depth and is stored beneath its 4 × 3.2 km summit caldera in an underground reservoir. The reservoir is connected to a lava lake within a crater called Halema’uma’u, which is situated on the floor of the caldera. When magma drains from the summit area it travels in underground conduits and emerges on the flanks of the volcano at a rift zone, where it erupts through fissures. The magma is sometimes stored in other reservoirs along the way. This link between summit magma storage and fissure eruptions on the flanks has occurred thousands of times at many Hawai’ian volcanoes. The current eruptive episode is, however, a ‘once‐in‐a‐century’ show, because it is the first time since 1924 that fissure‐fed lava flow eruptions have been accompanied by significant explosive eruptions within Halema’uma’u Crater. This gives scientists a unique opportunity to use modern methods to understand exactly how such hazardous explosions happen at Kīlauea, a volcano that receives about 2 million visitors a year.  相似文献   
140.
The ability of a community to withstand and recover from adversities including natural and man-made disasters has emerged as a major policy issue in recent years. This research aims to assess the role of institutional initiatives in building resilient communities and their response to natural disasters like the Gorkha earthquake in Nepal in 2015. The work is based on data collected from primary and secondary sources along with field observations. It is evident that resilient communities are equipped with greater coping capacities in the face of natural disasters and have reduced vulnerability to future hazards. Institutional capacity building and resilient construction including the School Earthquake Safety Program ensured better disaster preparedness. The traditional open spaces and building designs added to the structural resilience. There is, however, a need to build back better and to communicate earthquake-resistant designs to the affected communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号