首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   4篇
  国内免费   1篇
测绘学   4篇
大气科学   15篇
地球物理   16篇
地质学   35篇
海洋学   9篇
天文学   3篇
自然地理   6篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
81.
The valley of Kashmir is blessed with abundant water resources. However, high population growth and concentration of population at favorable locations have resulted in increased demand for water. The problem is further aggravated in Lidder catchment where unplanned tourism development has resulted in deterioration of water quality. Multi-Criteria Evaluation (MCE) approach is adopted using IRS P6 LISS III satellite data 2010, geological map published by Geological Survey of India, toposheets prepared by Survey of India, 1961 and field observation. Seven thematic layers (slope, lineament density, drainage density, soil, geology, geomorphology and land use land cover) are generated in GIS environment and weighted according to their relative relevance to groundwater occurrence. Knowledge-based weights and ranks are normalized, and a weighted linear combination technique is adopted to determine the groundwater potential (GWP). The catchment is divided into five zones of very high, high, medium, low and very low GWP. The results show that 50.22% of the total catchment area, which is uninhabited, has very low GWP. However, the densely populated southern part of the catchment has moderate to very high GWP. The study demonstrates that MCE using remote sensing and GIS technology could be efficiently employed as a very useful tool for the assessment and management of groundwater resources especially in regions where data is poor.  相似文献   
82.
Contourite drifts are sediment bodies formed by the action of bottom currents. They are common features found on continental slopes and are often affected by slope failure. However, processes controlling slope instability in contourite depositional systems are still not well constrained, and it is not clear whether contourites have particular properties that make them more susceptible to slope failure. In this study, we compare sedimentological and geotechnical properties of contouritic and hemipelagic sediments within the Corsica Trough (northern Tyrrhenian Sea) using geophysical data sets and sediment cores in order to get a better understanding of the controlling factors of slope stability. Geomorphological and slope stability analyses reveal that differences in sediment properties have little influence on the location of submarine landslides, in comparison with the morphology of the drifts. Hence, the steep downslope flanks of plastered drift deposits are the most susceptible zones for local failure initiation. Moreover, as erosion is common at the foot of plastered drifts, undercutting is thought to contribute to the development of large-scale failure up to the point that submarine landslides are triggered.  相似文献   
83.
The Oregon State University coupled upper ocean-atmosphere GCM is evaluated in terms of the simulated winds, ocean currents and thermocline depth variations. Although the zonal wind velocities in the model are underestimated by a factor of about three and the zonal current velocities are underestimated by a factor of about five, the model is seen to qualitatively simulate the major features of the gyral scale currents, and the phases of the seasonal variation of the principal equatorial currents are in reasonable agreement with observations. The simulated tropical currents are dominated by Ekman transport and the eastern boundary currents do not penetrate far enough equatorward, while the western boundary currents do not penetrate far enough poleward. The subtropical trade wind belt and the mid-latitude westerlies are displaced equatorward of observations; hence, the mid-latitude eastward currents, principally the Kuroshio-North Pacific Drift and the Gulf Stream-North Atlantic Current are displaced equatorward. In spite of these shortcomings the surface current simulation of this two-layer upper ocean model is comparable with that of other ocean GCMs of coarse resolution. The coupled model successfully simulates the deepening of the thermocline westward across Pacific as a consequence of the prevailing Walker circulation. The region of most intense simulated surface forcing is located in the western Pacific due to a southwestward displacement of the northeast trade winds relative to observations; hence the equatorial Pacific is dominated by eastward propagation of thermocline depth variations. The excessively strong Ekman divergence and upwelling in the western Pacific cools the local warm pool, while incorrectly simulated westerlies in the eastern Pacific suppress upwelling and inhibit cooling from below. These features reduce the simulated trans-Pacific sea-surface temperature gradient, weakening the Walker circulation and the anomalies associated with the simulated Southern Oscillation. Offprint requests to: KR Sperber  相似文献   
84.
The Gravity Recovery and Climate Experiment (GRACE), along with other relevant field and remote sensing datasets, was used to assess the performance of two land surface models (LSMs: CLM4.5-SP and GLDAS-Noah) over the African continent and improve the outputs of the CLM4.5-SP model. Spatial and temporal analysis of monthly (January 2003–December 2010) Terrestrial Water Storage (TWS) estimates extracted from GRACE (TWSGRACE), CLM4.5-SP (TWSCLM4.5), and GLDAS-Noah (TWSGLDAS) indicates the following: (1) compared to GRACE, LSMs overestimate TWS in winter months and underestimate them in summer months; (2) the amplitude of annual cycle (AAC) of TWSGRACE is higher than that of TWSLSM (AAC: TWSGRACE > TWSGLDAS > TWSCLM4.5); (3) higher, and statistically significant correlations were observed between TWSGRACE and TWSGLDAS compared to those between TWSGRACE and TWSCLM4.5; (4) differences in forcing precipitation and temperature datasets for GLDAS-Noah and CLM4.5-SP models are unlikely to be the main cause for the observed discrepancies between TWSGRACE and TWSLSM; and (5) the CLM4.5-SP model overestimates evapotranspiration (ET) values in summer months and underestimates them in winter months compared to ET estimates extracted from field-based (FLUXNET-MTE) and satellite-based (MOD16 and GLEAM) ET measurements. A first-order correction was developed and applied to correct the CLM4.5-derived ET, soil moisture, groundwater, and TWS. The corrections improved the correspondence (i.e., higher correlation and comparable AAC) between TWSCLM4.5 and TWSGRACE over various climatic settings. Our findings suggest that similar straightforward correction approaches could potentially be developed and used to assess and improve the performance of a wide range of LSMs.  相似文献   
85.
Interannual variations of total copepod abundance in the Gulf of Maine (1961-1991) are analyzed and related to the semi-permanent atmospheric pressure systems: Icelandic Low (IL) and the Azores High (AH). These centers of action dominate atmospheric and oceanic circulation in the North Atlantic. Cross-correlation analysis of zooplankton, sea surface temperature (SST) and the atmospheric characteristics have revealed different (from one to three years) time lags between the above characteristics. A multiple stepwise regression analysis gave a correlation value of 0.7 between observed and predicted interannual changes of total copepod abundance. A discussion is included of possible mechanisms that may contribute to the dynamic links that transfer atmospheric variation into observed changes in zooplankton abundance.  相似文献   
86.
The physical (turbidity, color, smell, taste, pH, and conductivity) and geochemical properties (Ca, Mg, Na, Fe, Mn, Al, K, Cl?, HCO3 ?, SO4 2?, Fe, Cu, Co, Ni, Zn, Cd, Pb, and Cr) of the drinking water in Gümü?hane city center were determined. This city center constitutes the study area. The pH levels of the water samples ranged from 6.3 to 8.2, and their conductivities ranged between 240 and 900 μS. These findings were concordant with the drinking water standards of the Turkey Standard Institute and the World Health Organization. The hardness of the water samples in the study area was between 18.1 and 115.1 °Fr. These samples were classified as extremely hard, hard, and quite hard. In addition, an assessment using the criteria for Inland Surface Water Classification indicated that considering certain parameters (pH levels, amount of Na, SO4 2?, Fe, Mn, Al, Co, Ni, Cu, and Cr), the samples belonged to class I (high quality) water. When Cl? amount and conductivity were considered, the samples belonged to the first and second classes (less polluted) of water. The water in the study area was generally classified as carbonated and sulfated (Ca + Mg > Na + K) water classes. This water contained more weak acids than strong acids (HCO3 ? + CO3 2? > Cl? + SO4 2?). The pH levels (6.3–8.2) of the water in the study area were unrelated to the varying concentrations of metals in the water. Elements such as Fe, Ni, Cd, Pb, Zn, and Cu increase in the water through the water–rock interaction in the area in which water rises or through the mixture of water with either mine or industrial wastes. In addition, several water samples belonged to an acceptable water class for drinking and usage.  相似文献   
87.
Abstract

Based on 16 years of oceanographic and meteorological data the monthly variations of the net heat flux at the air‐sea interface in coastal waters near Jeddah show that the sea gains an average of about 14 ±2 W m?2 from April to October and loses about 79± 4W m?2from November to March. The loss of heat during the winter months is not compensated by the gain during the summer months and therefore leads to an annual average deficit of 25 ± 3 Wm?2. The gain during summer may not favour the formation of a strong seasonal thermocline.  相似文献   
88.
地下水位变化对干旱区植被盖度的影响及其空间变异特征   总被引:5,自引:0,他引:5  
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km^2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号