首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6435篇
  免费   281篇
  国内免费   81篇
测绘学   235篇
大气科学   512篇
地球物理   1521篇
地质学   2156篇
海洋学   523篇
天文学   1176篇
综合类   28篇
自然地理   646篇
  2022年   30篇
  2021年   75篇
  2020年   86篇
  2019年   122篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   196篇
  2013年   407篇
  2012年   257篇
  2011年   342篇
  2010年   291篇
  2009年   381篇
  2008年   336篇
  2007年   290篇
  2006年   268篇
  2005年   259篇
  2004年   261篇
  2003年   205篇
  2002年   214篇
  2001年   115篇
  2000年   144篇
  1999年   102篇
  1998年   114篇
  1997年   81篇
  1996年   85篇
  1995年   83篇
  1994年   90篇
  1993年   73篇
  1992年   88篇
  1991年   67篇
  1990年   55篇
  1989年   50篇
  1988年   57篇
  1987年   52篇
  1986年   56篇
  1985年   67篇
  1984年   64篇
  1983年   76篇
  1982年   57篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6797条查询结果,搜索用时 437 毫秒
391.
A two-dimensional horizontal finite element numerical model (RMA-2) was applied to a 24 km river channel-floodplain reach in West Germany. Initial results indicate that finite element schemes may successfully estimate inundation in large-scale floodplain applications. Potentially, the resulting detailed velocity vector distributions and identification of inundation zones throughout storm events could provide an insight into the present day sedimentary environment on the floodplain.  相似文献   
392.
Twenty-two hornblendes separated from amphibolites and granulites of the Grenville Orogen of Ontario have been quantitatively analyzed for major and minor elements by electron microprobe, for FeO/Fe2O3 by wet chemistry, and for H2O by manometric measurement as H2. Hornblende formulae were calculated on the basis of 24O+OH+Cl+F. Most samples are magnesio-hornblendes, ferroan pargasitic hornblendes and ferroan hastingsitic hornblendes, with weight fractions of Fe3+/(Fe2++Fe3+) ranging from 0.15 to 0.50. An oxy-amphibole component of 0–25 mol%, with an average value of 17 mol%, is obtained for these complete analyses. When compared with structural formulae determined solely from microprobe data, normalization based on 13=Si+Ti+Al+Fe+Mn+Mg cations provides the best approximation to hornblende formulae calculated from the complete analyses. Less satisfactory agreement is obtained from a normalization scheme based on 15=Si+Ti+Al+Fe+Mn+Mg+Ca, while worst agreement is obtained from normalization to 23 oxygens assuming all Fe is Fe2+. No normalization scheme based on microprobe data alone consistently replicates the measured FeO, Fe2O3, and H2O; accurate determination of these values requires complete chemical analysies. Ionic solution models previously have been proposed to evaluate the activity of Ca2Mg5Si8 O22(OH)2(a Trem) in hornblende for use in equilibria that constrain the activity of H2O (a H 2O) in igneous and metamorphic rocks. Application of ionic models to typical hornblendes produces low a Trem (usually<0.01), consequetly yielding extremely low a H 2O. If an oxy-amphibole component is present, the calculated a Trem and H2O is further reduced. An oxy-amphibole component of 25% reduces the calculated H2O activity and that of any hydroxyl-amphibole component by 50% below that calculated with simplified assumptions regarding X OH in the hydroxyl site (i.e., X OH=1, or X OH=1–X ClX f). Thus, methods of amphibole normalizations appear to have a substantial effect on calculated amphibole and H2O activites. Before quantitative hornblende thermobarometry can be calibrated and applied, the amounts of FeO, Fe2O3 and H2O must be measured in order to fully characterize hornblende solid solutions.Contribution No. 478 from the Mineralogical Laboratory, University of Michigan  相似文献   
393.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   
394.
The lower Neuse River Estuary is a temperate mesohaline system which forms the major southern tributary of Pamlico Sound, North Carolina. The crustacean zooplankton of this well-mixed system were sampled for a 20-month period from May 1988 through December 1989. A submersible pump was used to sample both the entire water column and the sediment surface. Seasonal dominants included the calanoid copepodsAcartia tonsa andParacalanus crassirostris in summer, the cyclopoid copepodOithona colcarva in fall, the cladoceranPodon polyphemoides in winter, and harpacticoid copepods in spring. Non-naupliar biomass over the study period consisted of 38.8%A. tonsa, 7.7%P. crassirostris, 21.2%O. colcarva 23.6% harpacticoid copepods, and 6.0% cladocerans. The remainder of the biomass consisted ofPseudodiaptomus coronatus and barnacle nauplii. Mean total copepod densities ranged from 600 m?3 in May 1988 to 180,000 m?3 in August 1988. Mean copepod densities for 1989 were 25,000 m?3. Maximum densities during both years occurred during summer, with subsequent descreases throughtout the year until early spring. Abundances of total copepods, and ofAcartia tonsa in particular, were significantly correlated with water temperature, but with neither chlorophylla, phytoplankton productivity, nor any of an array of other physical or chemical variables. Regression analyses using data from this investigation, and supported by results from other regional studies, indicate that water temperature is likely the single most important variable predicting zooplankton temporal abundance in North Carolina estuaries.  相似文献   
395.
Anisotropy of magnetic susceptibility (AMS) of the middle Tertiary Bloodgood Canyon and Shelley Peak Tuffs of the Mogollon-Datil volcanic field has been used to (1) evaluate the ability of AMS to constrain flow lineations in low-susceptibility ash-flow tuffs; (2) establish a correlation between magnetic fabric, magnetic mineralogy, tuff facies, and characteristics of the depositional setting; and (3) constrain source locations of the tuffs. The tuffs are associated with the overlapping Bursum caldera and Gila Cliff Dwellings basin. The high-silica Bloodgood Canyon Tuff fills the Gila Cliff Dwellings basin and occurs as thin outcrops outside of the basin. The older Shelley Peak Tuff occurs as thin outcrops both along the boundary between the two structures, and outside of the complex. AMS data were collected from 16 sites of Bloodgood Canyon Tuff basin fill, 19 sites of Bloodgood Canyon Tuff outflow, and 11 sites of Shelley Peak Tuff. Sites were classified on the basis of within-site clustering of orientations of principal susceptibility axes, based on the categories of Knight et al. (1986). Most microscopically visible oxide minerals in the Bloodgood Canyon Tuff outflow and basin fill, and in the Shelley Peak Tuff are members of the hematite-ilmenite solid solution series. However, IRM acquisition data indicate that Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff have magnetic mineralogy dominated by single- or pseudo-single-domain magnetite, and that the magnetic mineralogy of the Bloodgood Canyon Tuff outflow is dominated by hematite. Hematite in Bloodgood Canyon Tuff outflow is likely to be the result of deuteric and/or low-temperature alteration of magnetite and iron silicate minerals. Bulk magnetic susceptibility is higher in magnetite-dominated ash-flow tuff (Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff) than it is in hematite-dominated ash-flow tuff (Bloodgood Canyon Tuff outflow). Bloodgood Canyon Tuff outflow has the highest total anisotropy (H) of the three units, followed by Shelley Peak Tuff and Bloodgood Canyon Tuff basin fill. All three ash-flow tuffs are genearlly characterized by oblate susceptibility ellipsoids, with those of the Bloodgood Canyon Tuff basin fill nearest to spherical. At high values of total anisotropy, Shelley Peak Tuff susceptibility ellipsoids attain a prolate shape; those of Bloodgood Canyon Tuff outflow attain an increasingly oblate shape. Three factors may influence differences in total anisotropy and susceptibility ellipsoid shape: (1) ash which travelled the greatest distance before deposition may show the best development of magnetic fabric, particularly of magnetic lineation; (2) deposition of ash in a closed basin may inhibit laminar flow throughout the sheet and the resulting development of flow textures; and (3) replacement of magnetite and iron silicates preferentially oriented within the foliation plane by hematite with strong crystalline anisotropy may enhance the magnetic susceptibility within that plane. Scatter in AMS axis orientation within sites may result from: (1) greater orientation inaccuracy in block-sampled than in fielddrilled samples; (2) rheomorphism; and (3) low accuracy of AMS measurement in low-susceptibility ashflow tuffs. Evaluation of flow lineation based on AMS of sites with well-clustered K 1 axes indicates that (1) Bloodgood Canyon Tuff basin fill flowed along a generally northwest-southeast azimuth; (2) Shelley Peak Tuff located on the boundary of the Bursum caldera and the Gila Cliff Dwellings basin flowed along a nearly east-west azimuth; and (3) Bloodgood Canyon Tuff outflow sites have K 1 susceptibility axes generally radial to the Bursum-Gila Cliff Dwellings complex, but within-site scatter of K 1 orientations is generally too large to draw conclusions about flow lineation orientation. Limited petrographic work on pilot thin sections adds flow direction information to AMS-derived flow lineation information.  相似文献   
396.
397.
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248°C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat.  相似文献   
398.
A model that couples the surface energy balance equation, a surface hydraulic resistance equation, and the force-restore soil temperature model to a mixed-layer model of the planetary boundary layer is described. The mixed layer is separated from the soil by a relatively thin surface layer and is overlain by a stable free atmosphere with prescribed profiles of potential temperature and water vapour density. The model is in reasonably good agreement with daytime micrometeorological measurements made at a wet bare site at Agassiz, British Columbia, and a desert site at Pampa de La Joya, Peru. The sensitivity of the mixed-layer model to conditions in the free atmosphere, to the parameters describing the growth of the mixed layer, and to surface roughness lengths, surface hydraulic resistance, and windspeed is examined.  相似文献   
399.
A new form of equation of state is described with application to carbon dioxide from 215 K to T>2000 K and from zero pressure to more than 105 bar (10 GPa). The equation was calibrated using properties predicted by existing formulations at low to moderate PT conditions, original experimental PVT data at higher pressures, corresponding states comparisons at higher temperatures and using shock compression data at still higher PTs. Extensive comparisons illustrating the correlation of our new EOS with available phase equilibria and volumetric data are provided. Fugacities of carbon dioxide at high pressures and temperatures predicted using our EOS are in agreement with mineral equilibria calculated from internally consistent thermodynamic data for minerals.  相似文献   
400.
Expressions for both the rectilinear and rotational inertial and damping coefficients for a circular monolithic tower of uniform radius are derived. The analysis matches the fluid velocity, derived from potential theory, with the structural velocity in sway. That is, the motions of the tower are assumed to be in a vertical plane. The analysis is then applied to a tower composed of (lumped-mass) elements, where the expressions for the added-mass and damping coefficients are shown to be functions of wave number. The added-mass is shown to be a product of two wave systems: a travelling wave system, which is responsible for the radiation damping, and a standing wave system, called the evanescent system, which is attached to the structure. The added-mass of the evanescent system is negative for small wave numbers, while that of the travelling waves is positive. The negative sign simply means that the inertial force of the evanescent waves is 180° out of phase with that of the travelling system. Furthermore, it is shown that the contributions of the two wave systems to the total added-mass of the structure counteract each other, resulting in a total added-mass which varies gradually with the wave number. Finally, the analysis is applied to an experiment, and results of the analysis and the experiment are found to agree rather well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号